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Abstract
Background  Stress-induced hyperglycemia (SIH) is a common phenomenon in acute myocardial infarction and 
is associated with poor prognosis. The relationship between glycemic gap (GG), a marker of SIH, and ST-segment 
elevation myocardial infarction (STEMI)-associated acute kidney injury (STAAKI) remains unclear. This study aims to 
explore the predictive value of GG for the risk of STAAKI after percutaneous coronary intervention (PCI) in STEMI 
patients.

Methods  This study retrospectively selected patients diagnosed with STEMI who underwent primary PCI. Logistic 
regression analysis was used to identify the risk factors associated with STAAKI. To examine the dose-response 
relationship between GG and STAAKI, restricted cubic splines (RCS) were employed. The predictive accuracy of the 
models was assessed using Delong test, net reclassification index (NRI) and integrated discrimination improvement 
(IDI).

Results  This study included 595 patients, the incidence of STAAKI was 9.2%. Multivariate logistic regression showed 
LVEF (OR per 1% increase = 0.931, 95% CI: 0.895 ~ 0.969), NT-proBNP (OR per 1 pg/mL increase = 1.579, 95% CI: 
1.212 ~ 2.057), and GG (OR per 1 mmol/L increase = 1.379, 95% CI: 1.223 ~ 1.554) as independent predictors of STAAKI. 
RCS analysis indicated a linear dose-response relationship between GG and STAAKI. After integrating GG, the new 
model could significantly improve the risk model for STAAKI (Z = 2.77, NRI = 0.780, and IDI = 0.095; All P < 0.05).

Conclusion  GG is an independent risk factor for the occurrence of STAAKI after PCI in STEMI patients, and integrating 
GG can significantly improve risk modeling regarding STAAKI.

Clinical trial number  Not applicable.
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Introduction
Early restoration of coronary blood flow through percu-
taneous coronary intervention (PCI) plays a crucial role 
in improving the prognosis of patients with ST-segment 
elevation myocardial infarction (STEMI) [1]. STEMI-
induced acute kidney injury (STAAKI) has become a 
common cause of in-hospital acute kidney injury (AKI) 
[2–4]. STAAKI is closely associated with poor clinical 
outcomes and prolonged hospital stays [4, 5]. Due to the 
limited therapeutic options for STAAKI in clinical prac-
tice and its high incidence, accurately identifying high-
risk STEMI patients is of significant value [6].

In critically ill patients, the secretion of hormones 
such as cortisol, catecholamines, and glucagon signifi-
cantly increases, leading to stress-induced hyperglycemia 
(SIH) [7]. Admission blood glucose (ABG) has been used 
in some studies as a marker of SIH to predict the risk of 
adverse events [8, 9]. However, the relationship between 
ABG and adverse outcomes in acute patients, with or 
without diabetes, is inconsistent [10, 11]. Since ABG val-
ues are also influenced by chronic blood glucose levels, 
they do not accurately reflect the true extent of SIH [12, 
13]. Glycemic gap (GG), derived from the ABG adjusted 
for chronic blood glucose status via glycated hemoglobin 
(HbA1c), is considered a superior marker of SIH com-
pared to ABG, as it partially eliminates the impact of 
chronic hyperglycemia on disease severity assessment, 

thus improving the accuracy of the evaluation [14–16]. 
A substantial body of evidence has confirmed that GG 
levels in acute myocardial infarction (AMI) patients are 
closely related to adverse cardiovascular outcomes, with 
GG showing superior predictive value for major adverse 
cardiovascular events (MACE) compared to ABG [17–
19]. However, the relationship between GG and STAAKI 
in STEMI patients remains unclear. This study aims to 
explore the predictive value of GG for the risk of STAAKI 
after PCI in STEMI patients.

Methods
Study population
This study retrospectively selected patients who were 
admitted to Yichun People’s Hospital from January 2021 
to October 2024, diagnosed with STEMI [20]. Inclusion 
criteria: (1) age > 18 years; (2) successful PCI treatment 
within 12  h of symptom onset (TIMI = 3); (3) complete 
clinical data. Exclusion criteria: (1) history of myocardial 
infarction or coronary artery bypass grafting (CABG); (2) 
hemodialysis or chronic renal failure; (3) inflammatory 
diseases or malignant neoplasms; (4) exposure to other 
radiographic contrast agents or nephrotoxic medications 
[21] within 48 h before or 72 h after the procedure. The 
study flowchart was shown in Fig. 1. The study protocol 
was approved by the Ethics Committee of Yichun Peo-
ple’s Hospital and was in compliance with the Helsinki 

Fig. 1  The study flowchart. CABG = coronary artery bypass grafting; STAAKI = STEMI-induced acute kidney injury; STEMI = ST-segment elevation myocar-
dial infarction
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Declaration (Ethics number: 2024 − 304). Given that this 
study was a retrospective observational study with no 
harm to patients, informed consent was waived.

Data collection
Data on age, gender, risk factors (including smoking, 
hypertension, diabetes, and chronic kidney disease) were 
collected and recorded through the electronic medi-
cal record system. Serum creatinine (Scr) levels before 
PCI, and Scr measurements taken 48–72  h after con-
trast agent exposure were collected. STAAKI was defined 
as a Scr increase of at least 50% or 0.3  mg/dL within 
48–72  h following contrast exposure [22]. In addition, 
other blood test results during hospitalization, includ-
ing ABG, HbA1c, total cholesterol (TC), triglycerides 
(TG), estimated glomerular filtration rate (eGFR), peak 
C-reactive protein (CRP), peak high-sensitivity troponin 
T (hsTnT), and peak N-terminal pro B-type natriuretic 
peptide (NT-proBNP), were also collected and recorded. 
According to previous literature, A1C-derived average 
glucose (ADAG, mmol/L) = (1.59×HbA1c) − 2.59, and 
GG (mmol/L) = ABG - ADAG [23]. All PCI-related pro-
cedures were performed according to the STEMI guide-
line [20].

Statistical analysis
Data were analyzed using SPSS 27.0 (IBM, Chicago, USA) 
and R (version 4.3.1). The Kolmogorov-Smirnov test was 
used to assess data normality. Continuous variables with 
normal distribution were presented as mean ± standard 
deviation (SD) and analyzed using t-tests. Non-nor-
mally distributed continuous variables were expressed 
as median (Q25, Q75) and analyzed using the Mann-
Whitney U test. Categorical variables were presented as 
frequencies and percentages, and analyzed using the χ² 
test. Receiver operating characteristic (ROC) curve anal-
ysis was performed to assess the diagnostic value of GG 
for STAAKI in STEMI patients. Comparisons between 
the areas under the curve (AUC) were made using the 
Delong test. Logistic regression analysis was used to 
identify the risk factors associated with STAAKI. To 
examine the dose-response relationship between GG and 
STAAKI, restricted cubic splines (RCS) were employed. 
The predictive accuracy of the models was assessed using 
the net reclassification index (NRI) and integrated dis-
crimination improvement (IDI). A p-value < 0.05 was 
considered statistically significant.

Results
Patient characteristics
This study included 595 patients, of which 24.0% were 
female, with a mean age of 63.17 ± 13.18 years. The inci-
dence of STAAKI was 9.2%. Patients in the STAAKI 
group had higher ABG, GG (t- statistic = 6.89), CRP, and 

NT-proBNP, and a higher prevalence of diabetes, use 
of diuretics and left anterior descending artery (LAD) 
lesion. Additionally, they had a lower left ventricular 
ejection fraction (LVEF) compared to those in the No 
STAAKI group. All differences were statistically signifi-
cant (P < 0.05) (Table 1).

Logistic regression analysis of STAAKI
Univariate logistic regression revealed that ABG, GG, 
NT-proBNP, diabetes, LAD, diuretics and LVEF were 
significantly associated with the development of STA-
AKI (P < 0.05). After adjusting GG, NT-proBNP, dia-
betes, LAD, diuretics and LVEF, multivariate logistic 
regression showed LVEF (OR per 1% increase = 0.931, 
95% CI: 0.895 ~ 0.969), NT-proBNP (OR per 1 pg/mL 
increase = 1.579, 95% CI: 1.212 ~ 2.057), and GG (OR 
per 1 mmol/L increase = 1.379, 95% CI: 1.223 ~ 1.554) 
as independent predictors of STAAKI (Table  2). RCS 
analysis indicated a linear dose-response relationship 
between GG and STAAKI both before and after adjust-
ments (using the logistic regression), suggesting that 
higher GG levels are associated with an increased risk 
of STAAKI (Fig.  2). In the subgroup analysis, univari-
ate logistic regression showed GG (OR per 1 mmol/L 
increase = 1.614, 95% CI: 1.238 ~ 2.105, P < 0.001) was 
associated with STAAKI in patients with diabetes. 
In patients without diabetes, GG (OR per 1 mmol/L 
increase = 1.365, 95% CI: 1.199 ~ 1.554, P < 0.001) was also 
associated with STAAKI (Supplementary Table 1).

ROC analysis of STAAKI
ROC analysis demonstrated that the AUC for LVEF, 
ABG, NT-proBNP, diabetes, and GG in predicting STA-
AKI were 0.673, 0.654, 0.710, 0.565, and 0.734, respec-
tively (P < 0.05). The optimal cutoff value for GG was 
0.603 mmol/L, yielding a sensitivity of 69.1% and speci-
ficity of 74.1%. The Delong test suggested that the AUC 
of GG was larger than that of ABG (Z = 3.129, P = 0.002) 
and diabetes (Z = 3.116, P = 0.002). (Supplementary Table 
2, Table  3; Fig.  3). In the subgroup analysis, ROC anal-
ysis showed the AUC for GG was 0.717 (P = 0.001), the 
optimal cutoff value was 0.740 mmol/L, yielding a sen-
sitivity of 66.7% and specificity of 77.9% in patients with 
diabetes. In patients without diabetes, the AUC for GG 
was 0.750 (P < 0.001), the optimal cutoff value was 0.459 
mmol/L, yielding a sensitivity of 73.5% and specificity of 
70.8% (Supplementary Table 3).

Predictive accuracy of the models
A baseline model (LVEF, and NT-proBNP) was con-
structed based on the multivariate logistic regression. 
ROC analysis showed that the baseline model had an 
AUC of 0.746 (95% CI: 0.689 ~ 0.803), with a sensitivity 
of 81.8% and specificity of 59.8%. The new model that 
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Table 1  Patient characteristics
Total
(n = 595)

No STAAKI
(n = 540)

STAAKI
(n = 55)

P

Age, years 63.17 ± 13.18 63.06 ± 13.39 64.25 ± 10.98 0.453
Female, n (%) 143 (24.03) 126 (23.33) 17 (30.91) 0.210
Heart rate, bpm 79.92 ± 14.50 79.82 ± 14.61 80.93 ± 13.49 0.589
SBP, mmHg 127.71 ± 20.13 127.71 ± 20.26 127.76 ± 18.97 0.984
DBP, mmHg 79.11 ± 14.00 79.08 ± 14.10 79.40 ± 13.13 0.870
BMI, kg/m2 24.58 ± 3.85 24.51 ± 3.88 25.27 ± 3.49 0.164
Smoking, n (%) 276 (46.39) 256 (47.41) 20 (36.36) 0.118
Hypertension, n (%) 264 (44.37) 239 (44.26) 25 (45.45) 0.865
Diabetes, n (%) 157 (26.39) 136 (25.19) 21 (38.18) 0.037
CKD, n (%) 21 (3.53) 20 (3.70) 1 (1.82) 0.735
HGB, g/L 139.82 ± 17.02 139.92 ± 17.02 138.84 ± 17.12 0.654
Plt, 10^9/L 216.62 ± 58.71 217.39 ± 59.62 209.09 ± 48.67 0.318
Creatinine, µmol/L 67.24 ± 20.32 67.50 ± 20.61 64.67 ± 17.25 0.326
eGFR, mL/min/1.73 m2 102.38 ± 20.63 102.56 ± 20.81 100.65 ± 18.84 0.512
Total cholesterol, mmol/L 4.26 ± 1.01 4.25 ± 1.02 4.38 ± 0.94 0.388
Triglycerides, mmol/L 1.51 ± 1.13 1.52 ± 1.17 1.45 ± 0.72 0.685
HDL-C, mmol/L 0.98 ± 0.24 0.98 ± 0.24 1.00 ± 0.16 0.516
LDL-C, mmol/L 2.74 ± 0.87 2.72 ± 0.88 2.90 ± 0.85 0.166
ABG, mmol/L 7.86 ± 3.17 7.67 ± 2.93 9.68 ± 4.63 0.003
HBA1c, % 6.55 ± 1.71 6.56 ± 1.74 6.40 ± 1.29 0.488
ADAG, mmol/L 7.82 ± 2.71 7.85 ± 2.77 7.58 ± 2.05 0.488
GG, mmol/L 0.04 ± 2.42 -0.17 ± 2.24 2.10 ± 3.09 < 0.001
Peak hs-CRP, mg/L 2.20 (0.50, 7.65) 2.10 (0.50, 7.35) 2.70 (1.50, 9.35) 0.026
Peak hs-TnT, ng/L 528.0 (96.8, 1907.5) 492.8 (82.3, 1972.5) 1041.0 (157.0, 1616.0) 0.104
Peak NT-proBNP, pg/mL 1344.0 (564.6, 3033.6) 1200.0 (507.8, 2749.8) 3000.00 (1706.5, 4387.0) < 0.001
IABP, n (%) 16 (2.69) 14 (2.59) 2 (3.64) 0.985
LVEF, % 51.89 ± 6.99 52.32 ± 6.78 47.73 ± 7.75 < 0.001
Killip class, n (%) 0.137
  I 511 (85.88) 468 (86.67) 43 (78.18)
  II 28 (4.71) 26 (4.81) 2 (3.64)
  III 1 (0.17) 1 (0.19) 0 (0.00)
  IV 55 (9.24) 45 (8.33) 10 (18.18)
IRA-LAD, n(%) 296 (49.75) 261 (48.33) 35 (63.64) 0.031
IRA-LCX n(%) 58 (9.75) 53 (9.81) 5 (9.09) 0.863
IRA-RCA, n(%) 238 (40.00) 223 (41.30) 15 (27.27) 0.043
IRA-Left main, n(%) 3 (0.50) 3 (0.56) 0 (0.00) 1.000
Aspirin, n(%) 593 (99.66) 538 (99.63) 55 (100.00) 1.000
P2Y12, n(%) 594 (99.83) 539 (99.81) 55 (100.00) 1.000
Statins, n(%) 592 (99.50) 537 (99.44) 55 (100.00) 1.000
ACEI/ARB, n(%) 272 (45.71) 246 (45.56) 26 (47.27) 0.808
β-blockers, n(%) 516 (86.72) 469 (86.85) 47 (85.45) 0.771
Nitrates, n(%) 237 (39.83) 220 (40.74) 17 (30.91) 0.156
Heparin, n(%) 493 (82.86) 448 (82.96) 45 (81.82) 0.830
Diuretics, n(%) 298 (50.08) 263 (48.70) 35 (63.64) 0.035
The conversion factor for converting glucose: 1 mmol/L = 18.018 mg/dL

BMI = body Mass Index; IABP = intra-aortic balloon pump; LVEF = left ventricular ejection fraction; CKD = chronic kidney disease; SBP = systolic blood pressure; 
DBP = diastolic blood pressure; LAD = left anterior descending; LCX = left circumflex artery; RCA = right coronary artery; ACEI = angiotensin-converting-enzyme 
inhibitor; ARB = angiotensin II receptor blocker; HDL-C = high-density leptin cholesterol; LDL-C = low-density leptin cholesterol; hs-CRP = high sensitivity C-reactive 
protein; hs-TnT = high sensitivity troponin T; NT-proBNP = N-terminal pro-B-type natriuretic peptide; STAAKI = ST-segment elevation myocardial infarction-induced 
acute kidney injury; GG = glycemic gap; ABG = admission blood glucose
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integrating GG (LVEF, NT-proBNP, and GG) had an 
AUC of 0.809 (95% CI: 0.755 ~ 0.863), with a sensitivity of 
76.4% and specificity of 75.2%. The Delong test suggested 
that the AUC of the new model was significantly larger 
than that of the baseline model (Z = 2.77, P = 0.006). NRI 
and IDI for the new model were 0.780 (0.5157 ~ 1.0446), 
P < 0.001, and 0.095 (0.0493 ~ 0.1397), P < 0.001, respec-
tively. These findings indicate that the new model sig-
nificantly improves the risk model for STAAKI in STEMI 
patients (Table 4; Fig. 4, Supplementary Table 4).

Discussion
The main findings of this study are as follows: first, ele-
vated GG is an independent risk factor for STAAKI in 
STEMI patients; second, there is a linear dose-response 
relationship between GG and STAAKI; and third, inte-
grating GG significantly improves the risk model for 
STAAKI.

Compared to the general population, the incidence 
of STAAKI after coronary angiography is significantly 
higher in patients with acute myocardial infarction 
(AMI) and diabetes [24, 25]. In our study, the incidence 

Table 2  Univariate and multivariate regression analysis for STAAKI
OR per 1 unit increase (95%CI) P OR per 1 unit increase (95%CI) P

Age, years 1.007 (0.986 ~ 1.029) 0.520
Female, n (%) 1.470 (0.802 ~ 2.694) 0.213
Heart rate, bpm 1.005 (0.986 ~ 1.024) 0.588
SBP, mmHg 1.000 (0.986 ~ 1.014) 0.984
DBP, mmHg 1.002 (0.982 ~ 1.022) 0.870
BMI, kg/m2 1.052 (0.979 ~ 1.131) 0.164
Smoking, n (%) 0.634 (0.357 ~ 1.126) 0.120
Hypertension, n (%) 1.050 (0.601 ~ 1.832) 0.865
Diabetes, n (%) 1.835 (1.030 ~ 3.269) 0.039
CKD, n (%) 0.481 (0.063 ~ 3.658) 0.480
HGB, g/L 0.996 (0.980 ~ 1.013) 0.653
Plt, 10^9/L 0.998 (0.993 ~ 1.002) 0.318
Peak hs-CRP, mg/L 1.007 (1.000 ~ 1.015) 0.058
Creatinine, µmol/L 0.993 (0.978 ~ 1.007) 0.325
eGFR, mL/min/1.73 m2 0.996 (0.983 ~ 1.009) 0.512
Peak hs-TnT, ng/L 1.144 (0.982 ~ 1.334) 0.085
Peak NT-proBNP, pg/mL 1.658 (1.311 ~ 2.097) < 0.001 1.579 (1.212 ~ 2.057) 0.001
Total cholesterol, mmol/L 1.126 (0.860 ~ 1.474) 0.388
Triglycerides, mmol/L 0.945 (0.718 ~ 1.243) 0.685
HDL-C, mmol/L 1.323 (0.415 ~ 4.217) 0.637
LDL-C, mmol/L 1.241 (0.914 ~ 1.686) 0.166
ABG, mmol/L 1.150 (1.073 ~ 1.233) < 0.001
HBA1c 0.940 (0.789 ~ 1.119) 0.487
ADAG, mmol/L 0.962 (0.862 ~ 1.073) 0.487
GG, mmol/L 1.389 (1.238 ~ 1.559) < 0.001 1.379 (1.223 ~ 1.554) < 0.001
IABP, n (%) 1.418 (0.314 ~ 6.407) 0.650
LVEF, % 0.919 (0.886 ~ 0.953) < 0.001 0.931 (0.895 ~ 0.969) < 0.001
Killip class > 1, n (%) 1.814 (0.913 ~ 3.603) 0.089
IRA-LAD, n(%) 1.871 (1.053 ~ 3.324) 0.033
IRA-LCX n(%) 0.919 (0.351 ~ 2.405) 0.863
IRA-RCA, n(%) 0.533 (0.287 ~ 0.989) 0.046
ACEI/ARB, n(%) 1.071 (0.615 ~ 1.868) 0.808
β-blockers, n(%) 0.889 (0.404 ~ 1.960) 0.771
Nitrates, n(%) 0.651 (0.358 ~ 1.182) 0.158
Heparin, n(%) 0.924 (0.449 ~ 1.900) 0.830
Diuretics, n(%) 1.843 (1.037 ~ 3.275) 0.037
ABG and RCA were not included in the multivariate regression analysis considering the interference of correlation BMI = body Mass Index; IABP = intra-aortic balloon 
pump; LVEF = left ventricular ejection fraction; CKD = chronic kidney disease; SBP = systolic blood pressure; DBP = diastolic blood pressure; LAD = left anterior 
descending; LCX = left circumflex artery; RCA = right coronary artery; ACEI = angiotensin-converting-enzyme inhibitor; ARB = angiotensin II receptor blocker; 
HDL-C = high-density leptin cholesterol; LDL-C = low-density leptin cholesterol; hs-CRP = high sensitivity C-reactive protein; hs-TnT = high sensitivity troponin T; 
NT-proBNP = N-terminal pro-B-type natriuretic peptide; STAAKI = ST-segment elevation myocardial infarction-induced acute kidney injury; GG = glycemic gap; 
ABG = admission blood glucose
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of STAAKI in STEMI patients after primary PCI was 
9.2%, which is consistent with previous research findings 
[26, 27]. Clinically, the management of STAAKI remains 
focused on prevention. Therefore, identifying more risk 
factors for STAAKI and optimizing risk stratification 
holds significant clinical value.

SIH generally refers to a transient increase in blood 
glucose levels caused by the activation of the sympathetic 

Table 3  ROC curve for STAAKI
AUC 95%CI P Cut-off Sensitivity Specificity

ABG, mmol/L 0.654 0.578 ~ 0.731 < 0.001 6.64 0.764 0.498
GG, mmol/L 0.734 0.658 ~ 0.809 < 0.001 0.603 0.691 0.741
Diabetes 0.565 0.482 ~ 0.648 0.112 - 0.382 0.748
GG = glycemic gap; ABG = admission blood glucose; STAAKI = ST-segment elevation myocardial infarction-induced acute kidney injury

Table 4  Incremental value of GG for STAAKI
NRI IDI
Estimate (95% 
CI)

P Estimate (95% 
CI)

P

LVEF + NT-proBNP Reference - Reference -
LVEF + NT-proB-
NP + GG

0.780 
(0.5157 ~ 1.0446)

< 0.001 0.095 
(0.0493 ~ 0.1397)

< 0.001

NT-proBNP = N-terminal pro-B-type natriuretic peptide; LVEF = left ventricular 
ejection fraction; GG = glycemic gap; STAAKI = ST-segment elevation myocardial 
infarction-induced acute kidney injury

Fig. 4  Receiver operating characteristic analysis (ROC) of models for 
identifying STAAKI. STAAKI = ST-segment elevation myocardial infarction-
induced acute kidney injury; GG = glycemic gap; LVEF = left ventricular 
ejection fraction; NT-proBNP = N-terminal pro-B-type natriuretic peptide

 

Fig. 3  Receiver operating characteristic analysis (ROC) of GG for identify-
ing STAAKI. STAAKI = ST-segment elevation myocardial infarction-induced 
acute kidney injury; GG = glycemic gap; ABG = admission blood glucose; 
DM = diabetes

 

Fig. 2  Dose-response relationship between GG and STAAKI. (A) a unadjusted dose-response relationship between GG and STAAKI; (B) an adjusted dose-
response relationship between GG and STAAKI. STAAKI = ST-segment elevation myocardial infarction-induced acute kidney injury; GG = glycemic gap
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nervous system during critical conditions. It has been 
identified as an important indicator of the severity of 
various diseases and conditions, including surgery, acute 
ischemic stroke, and acute myocardial infarction (AMI) 
[28, 29]. Currently, the main indicators for SIH include 
ABG and GG. However, ABG levels are influenced by 
both acute physiological stress and chronic baseline 
blood glucose levels, and therefore, they do not accu-
rately reflect the extent of SIH in acute disease states 
[12, 13]. GG quantifies the relative increase in chronic 
blood glucose during acute disease states, truly reflect-
ing the acute hyperglycemic condition, and has a strong 
correlation with disease severity and prognosis [14–19]. 
For AKI patients, an elevated ABG level does not nec-
essarily indicate stress-induced hyperglycemia [30]. 
A large body of evidence has confirmed that GG levels 
are more predictive of adverse cardiovascular outcomes 
than ABG levels in AMI patients [17–19, 31, 32]. How-
ever, the relationship between GG levels and STAAKI in 
STEMI patients remains unclear. Our study innovatively 
found that elevated GG was an independent risk factor 
for STAAKI in STEMI patients, and RCS showed a linear 
dose-response relationship between GG and STAAKI. In 
fact, the close relationship between SIH and renal injury 
has been established in many studies. A rapid increase 
in blood glucose can cause osmotic diuresis, leading to 
renal hypoperfusion and damage [33]. Moreover, SIH can 
trigger abnormal activation of the sympathetic nervous 
system, excessive release of catecholamines and cortisol, 
oxidative stress, inflammation, endothelial dysfunction, 
thrombosis, and ischemia-reperfusion injury, all of which 
may result in further cardiac injury, reduced renal reper-
fusion, and ultimately lead to AKI [34–36]. In our study, 
both ABG and diabetes were also found to be associated 
with the risk of STAAKI, but consistent with previous 
studies [17–19], the ROC results indicated that GG had a 
significantly stronger predictive ability for STAAKI than 
ABG and diabetes. Furthermore, our study also demon-
strated that GG could notably improve the risk model 
for STAAKI. Therefore, our findings provide additional 
information for risk stratification of STAAKI after PCI in 
STEMI patients. GG, as a simple and effective biomarker, 
could be widely used for screening high-risk popula-
tions of STAAKI after PCI in STEMI patients. Clinically, 
patients with elevated GG levels may require more atten-
tion and strategic management, such as hydration and 
choice of surgical approach.

Limitations
First, due to the inherent limitations of retrospective 
studies, the current findings could not demonstrate 
an exact causal relationship between elevated GG and 
STAAKI. Second, the sample size of the present study 
was valid and all were patients diagnosed with STEMI; 

therefore, some of the findings may need to be replicated 
in other diseases. Third, although our study has dem-
onstrated that there is a relationship between GG and 
STAAKI. However, the specific mechanism regarding the 
risk of elevated GG and the occurrence of STAAKI is not 
clear, which may require more basic research to clarify.

Conclusions
GG is an independent risk factor for the occurrence of 
STAAKI after PCI in STEMI patients, and integrating 
GG can significantly improve risk modeling regarding 
STAAKI.
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