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Abstract
Background Maintenance hemodialysis patients experience high morbidity and mortality, primarily from 
cardiovascular and infectious diseases. It was discovered recently that low arterial oxygen saturation (SaO2) is 
associated with a pro-inflammatory phenotype and poor patient outcomes. Sleep apnea is highly prevalent in 
maintenance hemodialysis patients and may contribute to intradialytic hypoxemia. In sleep apnea, normal respiration 
patterns are disrupted by episodes of apnea because of either disturbed respiratory control (i.e., central sleep apnea) 
or upper airway obstruction (i.e., obstructive sleep apnea). Intermittent SaO2 saw-tooth patterns are a hallmark of 
sleep apnea. Continuous intradialytic measurements of SaO2 provide an opportunity to follow the temporal evolution 
of SaO2 during hemodialysis. Using artificial intelligence, we aimed to automatically identify patients with repetitive 
episodes of intermittent SaO2 saw-tooth patterns.

Methods The analysis utilized intradialytic SaO2 measurements by the Crit-Line device (Fresenius Medical Care, 
Waltham, MA). In patients with an arterio-venous fistula as vascular access, this FDA approved device records 150 
SaO2 measurements per second in the extracorporeal blood circuit of the hemodialysis system. The average SaO2 of a 
10-second segment is computed and streamed to the cloud. Periods comprising thirty 10-second segments (i.e., 300 s 
or five minutes) were independently adjudicated by two researchers for the presence or absence of SaO2 saw-tooth 
pattern. We built one-dimensional convolutional neural networks (1D-CNN), a state-of-the-art deep learning method, 
for SaO2 pattern classification and randomly assigned SaO2 time series segments to either a training (80%) or a test 
(20%) set.

Results We analyzed 4,075 consecutive 5-minute segments from 89 hemodialysis treatments in 22 hemodialysis 
patients. While 891 (21.9%) segments showed saw-tooth pattern, 3,184 (78.1%) did not. In the test data set, the rate of 
correct SaO2 pattern classification was 96% with an area under the receiver operating curve of 0.995 (95% CI: 0.993 to 
0.998).

Conclusion Our 1D-CNN algorithm accurately classifies SaO2 saw-tooth pattern. The SaO2 pattern classification can 
be performed in real time during an ongoing hemodialysis treatment, provide timely alert in the event of respiratory 
instability or sleep apnea, and trigger further diagnostic and therapeutic interventions.
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Background
Maintenance hemodialysis (HD) patients suffer from 
unacceptable high morbidity and mortality, with cardio-
vascular disease (CVD) being the main cause of hospital-
ization and death. The association between low arterial 
oxygen saturation (SaO2) during dialysis and poor patient 
outcomes is well established [1, 2]. Physiologically, the 
transport of oxygen to peripheral tissues and organs 
depends on cardiac output, hemoglobin concentration, 
and saturation of hemoglobin molecules with oxygen. 
In HD patients, heart failure is a well-recognized cause 
of tissue hypoxia. Less appreciated is peripheral hypoxia 
due to structural and functional pathologies of the respi-
ratory system, resulting in reduced SaO2. Next to cardiac 
output and hemoglobin concentration, SaO2 is a crucial 
determinant of the amount of oxygen delivered to tissues 
and organs. Clinically, SaO2 can be assessed using both 
invasive and non-invasive methods. Recent advance-
ments have introduced technologies that enable con-
tinuous monitoring of SaO2 in the HD extracorporeal 
blood circuit during a treatment session. These innova-
tions have proven valuable for identifying intradialytic 
hypoxemia [2], monitoring COVID-19 patients [3], and 
tracking other important clinical outcomes [1] such as 
respiratory instability [4]. Nocturnal hypoxemia is asso-
ciated with cardiovascular complications in incident 
hemodialysis patients [5]. Prolonged intradialytic hypox-
emia (PIH), defined as SaO2 below 90% for more than 
one third of the HD treatment time, is associated with 
increased hospitalization and mortality rates. In addition, 
maintenance HD patients with PIH show a pro-inflam-
matory phenotype, as indicated by higher inflammatory 
markers, lower serum albumin levels, and resistance to 
erythropoietin. Furthermore, PIH is more prevalent in 
HD patients with comorbidities such as congestive heart 
failure (CHF) and chronic obstructive pulmonary disease 
(COPD) [1]. Intradialytic hypoxemia is also associated 
with peridialytic hypertension, possibly related to sympa-
thetic activation and endothelin-1 secretion [6].

Recently, we observed distinct intermittent oscillatory 
saw-tooth pattern (STP) of SaO2 in patients on HD [4]. 
In some instances, through detailed clinical observa-
tion, we were able to link STP to sleep-related breathing 
disturbances. This finding is significant, as sleep-dis-
ordered breathing is common in dialysis patients [7]. A 
study found that 37% of males and 34% of females with 
end-stage kidney disease (ESKD) treated with dialysis 
had sleep apnea syndrome (SAS). SAS was significantly 
associated with age, obesity, diabetes, hypertension, and 
other sleep disorders [8, 9]. These findings highlight the 
importance of monitoring SaO2 during HD, as early 

identification of and intervention for intradialytic hypox-
emia could mitigate its impact on long-term morbidity 
and mortality in this vulnerable population.

A recent study using recurrence analysis quantifies an 
optimal recurrence threshold (εopt) to identify STP [4]. 
Constructing εopt time series with a rolling window allows 
real-time detection of intermittent high-frequency high-
amplitude STP. εopt correlates highly with SaO2 desatu-
ration density, and, using oxygen desaturation index as a 
surrogate for the apnea–hypopnea index, εopt accurately 
distinguishes SAS events.

One-dimensional convolutional neural networks (1D-
CNN) have gained significant attention in the medical 
field, particularly for analyzing time series of biomedical 
signals such as electrocardiograms (ECG) and electroen-
cephalograms (EEG). These networks can efficiently pro-
cess time-series data and other one-dimensional formats 
without extensive pre-processing. Applications include 
patient-specific ECG classification and early diagnosis of 
diseases [10].

Quasi-continuous measurement of SaO2 in the extra-
corporeal circuit by the Crit-Line monitor (CLM) affords 
the opportunity to follow the temporal evolution of SaO2 
during HD. Against this backdrop, we aimed to auto-
matically identify repetitive episodes of intermittent STP 
using 1D-CNNs.

Methods
In HD patients with an arterio-venous fistula as vascular 
access, the oxygen saturation in the extracorporeal HD 
circuit resembles SaO2. SaO2 during HD was measured 
using the CLM (Fresenius Medic Care North America, 
Waltham, MA), a device certified by the US Food and 
Drug Administration (FDA) for the measurement of 
hematocrit and oxygen saturation in the extracorporeal 
blood circuit of the HD system. CLM measures oxygen 
saturation and hematocrit 150 times per second. These 
measurements are then averaged over a 10-second period 
and the respective means transmitted to Amazon Web 
Services (AWS) via Apache KAFKA, a real time stream-
ing software [11].

Patient selection
To build our AI model, we collected intradialytic SaO2 
recordings from HD patients. The inclusion criteria were 
(a) being an in-center maintenance hemodialysis patient, 
and (b) availability of CLM SaO2 recordings. The patients 
were dialyzed in clinics of the Fresenius Kidney Care 
network that comprises about 2,500 clinics in the US. 
In about 600 of these clinics, CLM is used as a standard 
of care. There were no exclusion criteria. These rather 
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wide inclusion criteria and the absence of exclusion cri-
teria ensure that the base population is typical for a US 
HD population and that the results are generalizable. 
In these about 600 clinics, we have collected data from 
about 500,000 HD treatments. Out of these treatments 
we selected 89 treatments from 22 patients.

Visual inspection
We segmented the treatment time series into 5-min-
ute consecutive sections, each segment had 30 SaO2 
measurements. The 5-minute segments were visu-
ally inspected and independently adjudicated by two 
researchers who categorized them as either no saw-tooth 
pattern (NSTP, stable and consistent SaO2 with minimal 
fluctuations; Fig. 1A) or STP. NSTP indicates respiratory 
stability. In contrast, STP shows much greater variability 
and fluctuations with noticeable peaks and troughs over 
time; it indicates respiratory instability (Fig.  1B). The 
visual classification of SaO₂ patterns by the two inde-
pendent observers was based on two characteristics: 
amplitude and duration. NSTP were considered SaO₂ 
variations with an amplitude of less than 2%, with only 
occasional isolated spikes exceeding 5% in amplitude and 

lasting less than 30  s. In contrast, STP were considered 
by oscillations in SaO₂ with an amplitude greater than 
5% and a duration exceeding 30  s. Severe STP had an 
SaO₂ < 90%. The reason for the < 90% SaO₂ criterion was 
that earlier work showed that intradialytic SaO₂ < 90% is 
associated with increased morbidity and mortality [1]. 
Discrepancies between the two observers were resolved 
through a joint review.

Training
We randomly allocated the 5-minute SaO2 time series 
segments to either training (80%) or test (20%) data sets. 
Initially, most segments in the training data were NSTP. 
To address this class imbalance in the training data, 
we up-sampled the STP group to match the number of 
NSTP samples. This was done by randomly selecting 
STP segments with replacement from the original pool 
and replacing the original STP samples in the training 
dataset with the newly selected ones. The test data set 
was not changed. The updated training dataset was then 
shuffled and randomly partitioned into two subsets. To 
improve model generalization, random Gaussian noise 
(mean = 0, standard deviation = 0.1) was added to every 

Fig. 1 Two examples of SaO2 time series. Panel (A) shows an SaO2 time series without saw-tooth pattern. Panel (B) shows a SaO2 saw-tooth pattern with 
about one cycle per minute
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SaO₂ measurement in one subset, which was then used 
to train the 1D-CNN. The other subset served as the vali-
dation set for computing the validation error throughout 
the optimization process.

For the learning process we used the Keras open-source 
deep learning library [12] to build a 1D-CNN. The input 
layer of our 1D-CNN receives the 5-minute time-series 
segments of SaO2. The first convolutional layer applies 
32 filters, each with a kernel size of 6, to extract low-level 
temporal patterns from the input sequences. A Batch 
Normalization layer follows the convolution to normalize 
activations and accelerate training. A Max Pooling layer 
with a pool size of 3 and a stride of 2 is applied to reduce 
spatial dimensions while retaining the most important 
features. A second convolutional layer is applied to the 
pooled output to refine feature extraction. This layer has 
32 filters with a kernel size of 3. Batch Normalization is 
again used to improve stability during training. Another 
Max Pooling layer with a pool size of 2 and a stride of 2 is 
applied. Following the convolutional and pooling layers, 
the output is flattened to a 1D vector to be fed into the 
fully connected layers. The fully connected layer with 32 
neurons is applied to capture deeper representations of 
the extracted features. Finally, the model outputs a prob-
ability distribution over two classes using a softmax acti-
vation function, providing classification probabilities for 
NSTP and STP, respectively (Fig. 2).

The model was trained using the Adam optimizer from 
the Keras 3.5 library with a categorical cross-entropy loss 
function [13]. Training was conducted for 1,500 epochs 
with a batch size of 32 and a learning rate of 0.000003.

Test/validation
The model with the smallest validation error was chosen 
as the final model. This final model was then evaluated 
on the test set using the following metrics: accuracy, sen-
sitivity, specificity, F1-score and area under the receiver 
operating curve (AUC).

Results
We sampled 89 HD treatments with SaO2 measure-
ments from 22 in-center patients across four different 
clinics (Table  1). Continuous variables are reported as 
mean (± standard deviation) or median [Q1, Q3] and 
categorical variables are presented as proportions. In 
total, 4,075 consecutive 5-minute segments were adjudi-
cated, 21.9% with STP and 78.1% with NSTP. The train-
ing dataset comprised 3,260 segments, while the test set 
contained 815 segments. Within the training set, NSTP 
and STP segments were distributed as 2,542 (78.0%) and 
718 (22.0%), respectively. In the test set, these distribu-
tions were 642 (78.8%) for NSTP and 173 (21.2%) for STP 
(Table 2).

Our 1D-CNN model reached a 96.4% accuracy and 
an AUC of 0.995 (95% CI: 0.993 to 0.998) in the test set 
(Fig.  3). The respective confusion matrix is shown in 
Table 3. In the test data, the model reached 96.5% sensi-
tivity, 96.4% specificity and 0.92 F1-score, indicating that 
it can work as a reliable method to detect STP.

For external validation, we randomly selected 20 
recent HD treatments from 18 clinics. For this sampling, 
we did not perform the up-sampling of STPs to ensure 
a more accurate representation of their actual preva-
lence. Within this external validation dataset, the model 
achieved a sensitivity of 95.1%, a specificity of 96.7%, and 
an F1-score of 0.79 (Table 4).

Fig. 2 Architecture of a 1-dimensional convolutional neural network (1D-CNN). In this example, a STP is presented to the input layer. The trained 1D-CNN 
computes the probabilities for NSTP and STP, respectively
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Figure 4 shows the SaO2 measurements of two differ-
ent HD treatments. Both sessions were about four hours 
long. In Fig. 4A, NSTP was classified, while for the ses-
sion shown in Fig. 4B the model classified STP for many 
of the 5-minute segments (shown in orange).

To distinguish presumably benign from more concern-
ing STP, we decided to further categorize STP in mild 
and severe STP. If a 5-minute segment was classified as 
STP and the minimum SaO2 in that segment was below 
90% then we classified it as severe STP. If a 5-minute seg-
ment was classified as STP and all SaO2 measurements 
were equal or above 90% then we classified it as mild STP. 
Figure  5 shows the same HD treatment as Fig.  4B after 
separating mild and severe STP.

Discussion
Our primary finding demonstrates that a 1D-CNN can 
classify quasi-continuous intradialytic SaO2 recordings 
with high accuracy into STP and NSTP, respectively. 
The method can be scaled easily, enabling efficient clas-
sification of a large volume of SaO2 measurements. Given 
the prevalence and clinical significance of hypoxemia 
in HD patients, this result may hold important clinical 
implications.

While adequate SaO2 is fundamentally important 
for health and quality of life, there is a notable knowl-
edge gap about SaO2 dynamics during HD. To address 
this issue, dialysis providers have implemented CLM 
devices in about 600 dialysis clinics across the US, 
many of which are connected to the cloud for seamless, 

Table 1 Patient and treatment characteristics
Patients
(n = 22)

Number of SaO2measurements per patient 5,557 ± 2,933
Age (years) 64.7 ± 14.3
Gender
 Female, n (%) 5 (23)
 Male, n (%) 17 (77)
Race
 White, n (%) 11 (50)
 Non-white, n (%) 11 (50)
Vintage (median [Q1, Q3], years) 7.9 [6.4, 12.9]
Comorbidities
 Diabetes, n (%) 14 (64)
 Congestive heart failure, n (%) 8 (36)
 Chronic obstructive pulmonary disease, n (%) 3 (14)
Treatment parameters
 Pre-dialysis SBP (mmHg) 147.6 ± 24.7
 Post-dialysis SBP (mmHg) 129.5 ± 22.4
 Pre-dialysis DBP (mmHg) 73.1 ± 12.3
 Post-dialysis DBP (mmHg) 66.1 ± 11.0
 Pre-dialysis weight (kg) 85.0 ± 26.6
 Post-dialysis weight (kg) 82.5 ± 25.7
 Dialysis duration (min) 228.2 ± 29.5
 Blood flow rate (mL/min) 416.0 ± 25.5
 Dialysate flow rate (mL/min) 648.4 ± 63.1
 Ultrafiltration volume (L) 2.5 ± 1.4

Table 2 Rate of saw-tooth pattern and no saw-tooth pattern 
among 5-minute segments in the training and test data, 
respectively

Saw-tooth pattern No saw-tooth pattern Total
Training data 22.0%

718 / 3,260
78.0%
2,542 /3,260

100%
3,260

Test data 21.2%
173 / 815

78.8%
642 / 815

100%
815

Total 21.9%
891 / 4,075

78.1%
3,184 / 4,075

100%
4,075

Table 3 Confusion matrix of the classification performance in 
the test data set

Prediction
Saw-tooth 
pattern

No saw-tooth 
pattern

Total

Actual Saw-tooth 
pattern

96.5%
167 / 173

3.5%
6 / 173

100%
173

No saw-tooth 
pattern

3.6%
23 / 642

96.4%
619 / 642

100%
642

Total 190 625 815

Table 4 Confusion matrix of the classification performance in 
the external validation data set

Prediction
Saw-tooth 
pattern

No saw-tooth 
pattern

Total

Actual Saw-tooth 
pattern

95.1%
58 / 61

4.9%
3 / 61

100%
61

No saw-tooth 
pattern

3.3%
27

96.7%
791 / 818

100%
818

Total 85 794 879

Fig. 3 Receiver operating curve and AUC on the test data set
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quasi-continuous data gathering. Recently, we collected 
over six billion intradialytic SaO2 measurements from 
over 70,000 HD patients [14]. The analysis of such a 
vast data repository necessitates automated methods, 
which led us to develop an AI-based tool, a 1D-CNN. 
This model accurately classifies STP in SaO2 time series 
recorded during HD. We plan to deploy the model in the 
cloud, focusing on quantifying the SaO2 pattern at both 
the treatment and patient levels. This approach aims to 
enhance our understanding of intradialytic SaO2 dynam-
ics and their clinical correlates.

SaO2 is a critical parameter in the management of 
patients undergoing HD, as it provides insights into 
the patient’s respiratory and circulatory status. In HD 
patients, maintaining adequate SaO2 is essential due to 
the unique physiological challenges posed by HD. Stud-
ies have shown that a significant proportion of hemo-
dialysis patients experience episodes of hypoxia, with 
some reporting SaO2 levels dropping below 90% during 
treatment [1]. SaO2 serves as a prognostic indicator, with 
studies demonstrating that lower arterial oxygen satura-
tion levels during HD are associated with poorer clinical 

Fig. 5 Intradialytic SaO2 measurements during a hemodialysis session with intermittent mild (orange) and severe (red) saw-tooth patterns

 

Fig. 4 Intradialytic SaO2 measurements during two hemodialysis sessions. (A) Session without saw-tooth pattern classified. (B) Session with saw-tooth 
patterns (orange)
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outcomes, including higher rates of hospitalization and 
mortality [1]. In addition, low SaO2 during HD has been 
associated with intradialytic hypertension, possibly due 
to activation of the sympathetic nervous system activa-
tion, stimulation of the renin-angiotensin-aldosterone 
system (RAAS), and endothelin-1 release [6]. During the 
Covid pandemic, low SaO2 before the diagnosis of Covid-
19 identified patients at high risk for hospitalization and 
death [3].

However, to date, the relationship between SaO2 STP 
and outcomes in HD patients is unknown. The reasons 
for this knowledge gap are multifaceted. First, it was only 
a few years ago that cloud-connected CLM devices were 
deployed, enabling the necessary data storage. Second, 
these newer CLM devices report SaO2 every 10 s, a sig-
nificant improvement over the previous devices, which 
reported only once per minute. Nevertheless, it is con-
ceivable that the ability to classify SaO2 STP could inform 
clinical decision-making or diagnostic and therapeu-
tic interventions. For example, SaO2 STP are associated 
with SAS. This pattern typically reflects the intermittent 
nature of oxygen desaturation events that occur during 
apneic episodes. Galuzio et al. [4] highlight that oxim-
etry data in HD patients can reveal intermittent oxygen 
desaturations that correlate with the apnea–hypopnea 
Index (AHI), a key metric used to assess the severity of 
sleep apnea. Furthermore, the relationship between SaO2 
and SAS is underscored by findings from Jhamb et al. 
[15], who reported that lower mean oxygen saturation 
is associated with increased mortality risk in patients 
with advanced kidney disease, many of whom may also 
suffer from undiagnosed SAS. In addition, SAS in HD 
patients is associated with inflammation and oxidative 
stress [16]. In HD patients with SaO2 STP, specific clini-
cal exploration and testing for SAS could be considered. 
If confirmed, e.g., through polysomnography, appropriate 
treatment could be initiated. This is relevant, as sleep-
disordered breathing is frequent in dialysis patients [7]. 
The reported prevalence of sleep apnea is > 50% among 
dialysis patients [17–19]. SAS is a condition that is asso-
ciated with lower health-related quality of life [20] and 
increased cardiovascular and mortality risk in kidney 
patients [15, 21].

Other methods have been developed to identify SaO2 
STP. Galuzio et al. [4] devised a method that builds on 
dynamical systems theory and not on AI. The authors 
have developed a metric to quantify the occurrence of 
abnormal behaviors in the time series. This approach 
achieves an area under the ROC curve between 0.93 and 
0.94 to identify SaO2 pattern indicative of SAS. It will 
be interesting to see the relative performance of the two 
approaches in a well-defined patient cohort with a clini-
cal diagnosis of SAS.

When implemented at scale, the 1D-CNN will allow 
us to identify SaO2 STP and to investigate clinical cor-
relates of the SaO2 STP, including demographic factors, 
laboratory data as well as treatment-related parameters. 
Additionally, one can examine the relationship between 
quantifiable measures of the SaO2 STP and key clinical 
outcomes, including hospitalization and mortality. This 
correlation seeks to provide deeper insights into the clin-
ical significance of these patterns.

The quantification of STP at treatment level and patient 
level could also be used as feature inputs for other predic-
tive models, e.g. hospitalization predictive model. With 
current cloud setting, this saw-tooth pattern recognition 
could be performed in real-time during the dialysis treat-
ment and trigger a more specific diagnostic evaluation 
(e.g., polysomnography for definitive diagnosis of SAS) 
and therapeutic interventions.

Conclusions
In summary, we have developed an AI-based tool capable 
of detecting irregularities in SaO2 time series collected 
during hemodialysis. This tool will deepen our under-
standing of intradialytic SaO2 dynamics and support the 
implementation of advanced diagnostic and therapeutic 
interventions.
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