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Abstract
Background  Hospital readmission following renal transplantation significantly impacts patient outcomes and 
healthcare resources. While machine learning approaches offer promising solutions for risk prediction, their clinical 
application often lacks interpretability. We developed an explainable artificial intelligence (XAI) based supervised 
learning model to predict 30-day hospital readmission risk following renal transplantation.

Methods  We conducted a retrospective analysis of 588 renal transplant recipients at King Abdullah International 
Medical Research Center, with a predominance of living donor transplants (85.2%, n = 500). Our methodology 
included a four-stage machine learning pipeline: data processing, feature preparation, model development using 
stratified 5-fold cross-validation, and clinical validation. Multiple algorithms were evaluated, with gradient boosting 
demonstrating superior performance. Model interpretability was achieved through dual-approach analysis using 
SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations).

Results  The gradient boosting model demonstrated strong performance (AUC 0.837, 95% CI: 0.802–0.872) with 
accuracy of 0.796 ± 0.050 and sensitivity of 0.388 ± 0.129. Length of hospital stay (38.0% contribution) and post-
transplant systolic blood pressure (30.0% contribution) emerged as primary predictors, with differences between 
living and deceased donor subgroups. Pre-transplant BMI showed a higher importance in deceased donor recipients 
(12.6% vs. 2.6%), while HbA1c and eGFR were more impacting in living donor outcomes. The readmission rate in 
our cohort (88.9%, n = 523) was higher than previously reported ranges (18–47%), likely reflecting center-specific 
practices.

Conclusions  Our XAI-based machine learning model combines strong predictive performance with clinical 
interpretability, offering transplant physicians donor-specific risk stratification capabilities. The web-based 
implementation facilitates practical integration into clinical workflows. Given our single-center experience and 
high proportion of living donors, external validation across diverse transplant centers is essential before widespread 
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Background
Hospital readmission following renal transplantation is 
considered to be a significant challenge in the fields of 
nephrology, urology and transplantation medicine, often 
indicating complications that can impact graft survival 
and patient outcomes in significant manner [1, 2]. With 
the rising number of renal transplantations performed 
around the world from different healthcare systems, 
the ability to predict and possibly prevent unnecessary 
readmissions has become an important concern for the 
healthcare systems and patient care optimization [3–6].

The complexity of post-transplant care involves 
multiple medical and clinical factors, as the pre-
existing conditions, surgical complications, immunosup-
pression management, and various clinical variable that 
can impact the likelihood of readmission. The traditional 
and standard clinical approaches to predicting readmis-
sion risk have relied primarily on clinical judgment and 
basic statistical models, which may not fully capture the 
underlying relationships precisely for patients [7, 8].

As with ongoing recent developments and advance-
ments in artificial intelligence modalities and technolo-
gies, machine learning approaches have demonstrated 
promising role in healthcare applications, especially in 
risk prediction and patient stratification. These advanced 
analytical methods offer the capability to process large 
volumes of clinical data and identify the sophisticated 
and complex patterns that might not be easily caught nor 
apparent using the standard statistical methods. How-
ever, a significant challenge in applying machine learn-
ing models in clinical practice has been their “black box” 
nature, which often makes it difficult for healthcare pro-
viders to understand and trust their predictions in clini-
cal settings and patient driven manner [9–11].

Our study addresses this challenge by developing an 
explainable artificial intelligence (XAI) model specifi-
cally designed for predicting 30-day hospital readmission 
risk following renal transplantation, by including both 
of pre-transplant and post-transplant variables to create 
a clinically applicable prediction tool. Our approach not 
only focusing on the predictive accuracy but also model 
interpretability, to ensure that healthcare providers can 
understand and trust the factors driving the predictions 
from the developed model in a good way [8, 12].

By combining advanced machine learning techniques 
with XAI frameworks, our study aims to bridge the gap 
between sophisticated predictive analytics and practi-
cal clinical application. Our proposed study represents 

a significant step toward developing more precise, inter-
pretable, and clinically useful tools for post-transplant 
care management [13]. Also, our translation of the model 
into a web-based interface makes this tool readily acces-
sible to healthcare providers, with significant possibility 
to improve the process of clinical decision-making and 
patient care strategies in the corresponding fields.

Methods
Study design and population
We conducted a retrospective analysis to develop and 
validate a machine learning model for predicting hospi-
tal readmission among renal transplant recipients based 
on data collected from the electronic medical records 
from King Abdullah International Medical Research 
Center (KAIMRC) after obtaining the necessary ethi-
cal approvals under protocol number NRC23R/730/11. 
The study cohort included adult patients who underwent 
renal transplantation, with additional datapoints collec-
tion spanning pre-transplant baseline characteristics, 
transplant procedures, and post-transplant outcomes. 
We included both living and deceased donor transplant 
recipients to ensure model generalizability across differ-
ent transplant scenarios. The study timeline covered the 
immediate post-transplant period through the first 30 
days after discharge, focusing specifically on readmission 
events during this period.

Data collection and processing
A structured data extraction protocol was utilized to 
collect information from electronic health records. The 
collected data included demographic information, clini-
cal variables, laboratory values, and transplant-specific 
characteristics. Our data preprocessing pipeline included 
handling of missing values through multiple imputa-
tion techniques, removal of duplicates, and validation of 
data consistency. Feature engineering was performed to 
derive clinically relevant variables and create meaningful 
aggregations of raw data. Patient data underwent group-
ing based on focused clinical criteria, with attention to 
time-based changing relationships between pre- and 
post-transplant variables.

Our data preprocessing workflow involved multiple 
stages. First, we assessed missingness patterns across 
all variables, finding [X%] of values missing across the 
dataset, with highest missingness in [variable names] 
([Y%]). We utilized multiple imputation using chained 
equations (MICE) with five imputations for continuous 

implementation. Our approach establishes a framework for developing center-specific risk prediction tools in 
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variables and mode imputation for categorical variables 
with less than 20% missingness. Variables with over 20% 
missing values were excluded from model development. 
Data normalization involved standard scaling (mean = 0, 
SD = 1) for all continuous variables prior to model train-
ing. Outliers, defined as values beyond three standard 
deviations from the mean, were winsorized rather than 
removed to preserve sample size. Feature selection com-
bined clinical domain knowledge with statistical filtering 
using univariate analysis (p-value < 0.2 threshold) and 
assessment of multicollinearity (removing features with 
variance inflation factor over five), ultimately reducing 
our initial 168,596 data points to 15 finalized predictors.

Model development pipeline
We designed and applied a multiphasic machine learning 
pipeline consisting of four stages that follows the TRI-
POD AI guidelines for developing and reporting clinical 
machine learning models [14]. The initial data processing 
stage involved cleaning and structuring the raw data. The 
feature preparation phase included categorical variable 
encoding, feature scaling to standardize numerical vari-
ables, and implementation of clinical thresholds based on 
established medical guidelines. The model development 
stage employed binary classification approaches with 
cross-validation methodology. Clinical validation was 
performed as the final stage to ensure and validate the 
medical relevance and practical applicability.

We have used a supervised machine learning approach 
where the model learns patterns from labeled training 
samples, specifically using patient characteristics as input 
features and 30-day readmission status as the target vari-
able. This supervised algorithm was selected because 
it directly optimizes predictive performance for our 
specific clinical outcome of interest while maintaining 
interpretability. Unlike unsupervised or semi-supervised 
approaches, our supervised framework enables direct 
application to clinical decision support by generating 
probability estimates for individual patients.

Algorithm selection and training
Multiple machine learning algorithms were aimed for the 
evaluation to identify the optimal approach and best per-
forming algorithm for the readmission prediction within 
30 days. The candidate algorithms included ensemble 
methods (Random Forest, XGBoost, Gradient Boost-
ing), traditional statistical approaches (Logistic Regres-
sion), and modern machine learning techniques (Support 
Vector Machine, K-Nearest Neighbors). Each algorithm 
underwent cross-validation through 5-fold validation 
aiming for precise and accurate performance estimation. 
The training process included hyperparameter optimiza-
tion through grid search with further cross-validation, 

to achieve optimal model configuration while avoiding 
overfitting.

To ensure a validated and precise model evaluation 
while maximizing use of our limited dataset, we imple-
mented stratified 5-fold cross-validation, maintaining 
consistent proportions of readmitted patients across all 
folds. This process randomly partitioned the dataset into 
five equal subsets, with each subset serving once as a vali-
dation set while the remaining data formed the training 
set. We maintained consistent preprocessing pipelines 
across all folds to prevent data leakage, applying fea-
ture scaling parameters derived only from training data 
to corresponding validation sets. Performance metrics 
were averaged across all five folds, with standard devia-
tions reported to quantify model stability. This validation 
approach provides a more reliable estimate of real-world 
performance than single train-test splits, with special 
concerns for our relatively modest sample size.

Model interpretability framework
We have utilized and applied a dual-approach interpret-
ability framework to ensure both global and local model 
explanability. The global interpretation utilized SHAP 
(SHapley Additive exPlanations) values to quantify fea-
ture contributions to model predictions across the entire 
dataset. Local interpretability was achieved through 
LIME (Local Interpretable Model-agnostic Explana-
tions) analysis, allowing focused practical testing of the 
model prediction patterns for individual case predictions. 
Our interpretability framework was designed to pro-
vide clinically interpretable highlights into the model’s 
decision-making process and apply the principles of XAI 
frameworks.

Feature contribution percentages were derived from 
SHAP values, which quantify each feature’s impact on 
model output based on cooperative game theory prin-
ciples. For each feature, we calculated the mean absolute 
SHAP value across all predictions in the test set, repre-
senting its average impact magnitude on the model out-
put regardless of direction. These absolute mean SHAP 
values were then normalized to sum to 100%, result-
ing in the reported contribution percentages. Our used 
approach provides an interpretable metric of each fea-
ture’s relative importance in the model’s predictive 
process, with higher percentages indicating stronger 
influence on readmission risk assessment.

Deployment architecture
The deployment strategy followed a three-tier architec-
ture designed for clinical implementation. The model 
packaging phase included encapsulation of all necessary 
components, including feature encoders, preprocessing 
pipelines, and clinical threshold definitions. Version con-
trol was made through GitHub repository management, 
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to achieve best reproducibility and precise controlled 
updates. The clinical application layer was developed 
using Streamlit, providing an intuitive web-based inter-
face for healthcare providers. The deployment pipeline 
included continuous integration practices, allowing for 
seamless updates while maintaining system stability and 
reliability.

Statistical analysis framework
The statistical framework was designed to evaluate both 
model performance and clinical relevance. Performance 
metrics were calculated using a standardized approach 
across all cross-validation folds, with dedicated compu-
tation of standard deviations to assess model stability. 
Feature importance analysis has utilized both of univari-
ate and multivariate approaches to quantify variable con-
tributions. Risk factors were categorized based on their 
statistical significance and clinical relevance, with clear 
delineation between primary, secondary, and additional 
risk factors.

Results
Study population characteristics
Our analysis has included a total of 588 renal transplant 
recipients with mean age of 54.3 (SD = 12.6), character-
ized by a mean follow-up duration of 11.2 ± 17.9 days. 
Our total cohort included 588 patients. However, one 
patient (0.2%) had missing donor type information in 
the medical record and was therefore excluded from 
donor-specific subgroup analyses while being retained in 
the overall cohort analysis. This accounts for the appar-
ent discrepancy between the total cohort size (n = 588) 
and the sum of living (n = 500) and deceased (n = 87) 
donor recipients. The demographic distribution showed 
a predominance of male recipients (62.4%, n = 367) com-
pared to female recipients (37.6%, n = 221), with a mean 
body mass index (BMI) of 26.2 ± 6.1 kg/m². Living donor 
transplantation has formed the majority of cases (85.2%, 
n = 500), while deceased donor transplants represented 
14.8% (n = 87). The blood group distribution showed type 
A predominance (37.1%), followed by type B (23.2%), 
AB (20.6%), and O (5.3%). A significant proportion of 
patients (58.3%, n = 341) presented with pre-existing dia-
betes mellitus, (Table  1). We analyzed two readmission 
metrics: [1] readmission incidence, defined as the per-
centage of patients experiencing at least one readmission 
within 30 days post-discharge (88.9% of patients), and [2] 
readmission rate, defined as the average number of read-
missions per patient within the 30-day period (2.2 ± 2.6 
readmissions), as some patients experienced multiple 
readmissions, while others had none. Among the 523 
patients experiencing readmission, the primary causes 
were: medication-related complications (28.3%, n = 148), 
suspected rejection requiring evaluation (21.6%, n = 113), 
infectious complications (19.5%, n = 102), surgical issues 
(15.3%, n = 80), and metabolic/electrolyte disturbances 
(9.8%, n = 51), with other miscellaneous causes account-
ing for the remainder (5.5%, n = 29).The causes varied 
significantly between living and deceased donor recipi-
ents (p-value < 0.01), with deceased donor recipients 
experiencing higher rates of suspected rejection-related 

Table 1  Baseline demographics and clinical characteristics of 
the study cohort
Characteristic: Value / Number:
Baseline characteristics:
  Age, Mean (SD) 54.3 (12.6)
  Total cohort size 588
  Follow-up duration, days 11.2 ± 17.9 [6.0 (1.0–13.0)]
  Male 367 (62.4%)
  Female 221 (37.6%)
  Body Mass Index, kg/m² 26.2 ± 6.1 [26.4 

(21.9–30.3)]
Transplant-Related Characteristics:
  Living donor 500 (85.2%)
  Deceased donor 87 (14.8%)
  A 218 (37.1%)
  B 136 (23.2%)
  AB 121 (20.6%)
  O 31 (5.3%)
  Immunosuppression regimen 563 (95.9%)
Pre-transplant Clinical Parameters:
  Systolic blood pressure, mmHg 135.0 ± 22.3 [136.0 

(120.0–150.0)]
  Diastolic blood pressure, mmHg 76.6 ± 15.1 [77.0 

(66.0–87.0)]
  HbA1c, % 5.8 ± 1.5 [5.3 (4.9–6.1)]
  eGFR, mL/min/1.73 m² 13.3 ± 18.5 [7.0 (5.0–12.0)]
  Diabetes Mellitus 341 (58.3%)
Post-transplant Clinical Parameters:
  Systolic blood pressure, mmHg 135.5 ± 19.4 [137.0 

(122.0–149.0)]
  Diastolic blood pressure, mmHg 74.5 ± 15.5 [75.0 

(63.8–84.0)]
  HbA1c, % 6.2 ± 1.6 [5.7 (5.2–7.1)]
  eGFR, mL/min/1.73 m² 19.2 ± 18.5 [13.0 

(9.0–21.0)]
  Serum creatinine, mg/dL 482.9 ± 275.8 [441.0 

(293.0–643.0)]
Outcomes and Complications:
  Length of initial hospital stay, days 4.3 ± 5.0 [3.0 (1.0–6.0)]
  Readmission rate within 30 days 2.2 ± 2.6 [1.0 (1.0–2.2)]
  Patients requiring readmission 523 (88.9%)
  Graft rejection episodes 42/70* (60.0%)
Notes: Values are presented as mean ± SD [median (IQR)] for continuous 
variables and n (%) for categorical variables. Missing data are indicated by a dash. 
Abbreviations: eGFR = estimated glomerular filtration rate; HbA1c = glycated 
hemoglobin; IQR = interquartile range; SD = standard deviation; BMI = body 
mass index; BP = blood pressure. *Denominator represents the subset of 
patients who underwent biopsy for suspected rejection. Among the entire 
cohort (n = 588), the biopsy rate was 11.9% (70/588)
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readmissions (29.4% vs. 19.8%, p-value = 0.02) and infec-
tious complications (25.6% vs. 18.2%, p-value = 0.04).

A total of 70 patients (11.9%) underwent biopsy for sus-
pected graft rejection. Among these, 42 biopsies (60.0%) 
confirmed rejection. This represents a confirmed rejec-
tion rate of 7.1% in the overall cohort.

Model performance and algorithm performance
We performed an evaluation of six machine learning 
algorithms, Gradient Boosting has achieved best overall 
performance metrics among other models, demonstrat-
ing well predictive capabilities with the highest accuracy 
(0.796 ± 0.050) and ROC-AUC (0.806 ± 0.035). The mod-
el’s precision of 0.629 ± 0.090 and recall of 0.388 ± 0.129 
reflected in an F1-score of 0.469 ± 0.105, representing 
a balanced performance across the different multiple 
metrics. XGBoost showed comparable but marginally 
lower performance (accuracy: 0.789 ± 0.031, ROC-AUC: 
0.799 ± 0.030). Traditional algorithms demonstrated 
lower performance, with Logistic Regression achieving 
an accuracy of 0.740 ± 0.031 and KNN showing the low-
est performance (accuracy: 0.707 ± 0.005), validating our 
selection of advanced ensemble methods for the final 
model (Table 2).

Implementation pipeline architecture and model 
deployment
The implementation framework was executed through 
a four-stage pipeline, initiating with the processing of 
168,596 raw data points derived from our cohort of 588 
patients. The feature preparation phase has included 
advanced categorical encoding techniques, standard-
ized feature scaling methodologies, and application of 
clinically validated thresholds. The model development 
phase achieved good performance metrics, with an AUC 
of 0.837, sensitivity of 0.86, and specificity of 0.79 during 
the clinical validation attempts (Fig. 1). The deployment 
architecture successfully materialized into a web-based 
clinical decision support tool, featuring real-time risk 
prediction capabilities and user-friendly interface ele-
ments through Streamlit implementation (​h​t​t​p​​s​:​/​​/​r​e​a​​d​m​​
i​s​s​​i​o​n​​-​p​r​e​​d​i​​c​t​i​​o​n​.​​s​t​r​e​​a​m​​l​i​t​.​a​p​p​/).

Feature importance analysis and risk stratification 
hierarchy
SHAP analysis revealed a multifactorial hierarchical 
structure of risk factors, with primary risk factors dem-
onstrating dominant contributions to the model’s predic-
tive capacity (Fig.  2). Length of hospital stay was noted 
to be the most predominant predicting factor (38.0% 
contribution), followed by post-transplant systolic blood 
pressure (30.0% contribution). The secondary risk tier 
included pre-transplant BMI (4.5%), pre-transplant dia-
stolic BP (3.6%), and post-transplant BMI (3.3%). Tertiary 
risk factors, each contributing less than 3%, included pre- 
and post-transplant HbA1c levels, eGFR measurements, 
and various demographic parameters (Fig. 3).

Feature effect distribution
The distribution of SHAP values represented the variable 
impacts across the clinical variables (Fig. 2). Post-trans-
plant systolic blood pressure and length of hospital stay 
ranked as the most extensive distribution ranges in their 
effects on readmission risk, reflecting their main in risk 
prediction in our developed model. Blood group classi-
fications and pre-transplant systolic BP measurements 
showed more centralized effect distributions, while 
immunosuppression status and transplant type demon-
strated narrower impact ranges, reflecting their more 
specific influence on risk assessment.

Model validation through random cases assessment
LIME XAI assessment was conducted across four ran-
dom cases. The model demonstrated sensitivity to the 
mentioned variables and thresholds above, especially for 
length of stay (> 0.27) and post-systolic BP variations. 
Each case analysis validated the model’s capacity to main-
tain consistent prediction capabilities and performance 
while effectively adapting to individual patient character-
istics and comorbidity profiles to maximize the achieve-
ment of precise and patient-based predictions according 
to their characteristics and demographics (Fig. 4).

Subgroup analysis of living and deceased donor 
transplantations
Clinical outcomes showed comparable 30-day readmis-
sion rates between living (88.4%) and deceased donor 
recipients (92.0%, p-value = 0.430). Similarly, hospital 

Table 2  Model performance comparison between different algorithms
Metric Random forest XGBoost Gradient boosting Logistic regression SVM KNN
Accuracy 0.765 ± 0.034 0.789 ± 0.031 0.796 ± 0.050 0.740 ± 0.031 0.760 ± 0.041 0.707 ± 0.005
Precision 0.549 ± 0.115 0.590 ± 0.048 0.629 ± 0.090 0.183 ± 0.186 0.000 ± 0.000 0.293 ± 0.124
Recall 0.210 ± 0.048 0.447 ± 0.124 0.388 ± 0.129 0.027 ± 0.025 0.000 ± 0.000 0.119 ± 0.015
F1-Score 0.296 ± 0.038 0.494 ± 0.063 0.469 ± 0.105 0.047 ± 0.043 0.000 ± 0.000 0.164 ± 0.034
ROC-AUC 0.731 ± 0.029 0.799 ± 0.030 0.837 ± 0.035 0.604 ± 0.088 0.534 ± 0.054 0.550 ± 0.046
Note: Values are presented as Mean ± Standard Deviation across 5-folds

https://readmission-prediction.streamlit.app/
https://readmission-prediction.streamlit.app/
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length of stay did not differ significantly between groups 
(3.9 ± 4.0 vs. 4.6 ± 4.6 days, p-value = 0.259). How-
ever, graft rejection episodes were markedly more fre-
quent in deceased donor recipients (47.1% vs. 13.8%, 
P-value < 0.001), highlighting a critical risk disparity that 
warrants targeted monitoring protocols (Table 3).

The gradient boosting model maintained acceptable 
performance across both subgroups, however perfor-
mance differences were present. The deceased donor 
subgroup demonstrated a lower AUC (0.762, 95% CI: 
0.685–0.839) compared to living donor recipients (0.787, 
95% CI: 0.738–0.836), with wider confidence intervals 
reflecting greater uncertainty in the smaller deceased 
donor cohort. Interestingly, sensitivity was marginally 
higher for the deceased donor subgroup (0.412 vs. 0.402), 
suggesting a capability for identifying high-risk patients 
despite the overall performance difference. It should be 
noted that sensitivity values are lower than specific-
ity across all groups, indicating greater model strength 
in correctly identifying non-readmitted patients than in 
detecting readmissions.

SHAP analysis demonstrated the predictor importance 
between subgroups (Fig. 5). While length of hospital stay 
remained the dominant predictor in both populations, its 
relative contribution was higher in living donor recipients 
(24.5% vs. 20.1%). Post-transplant systolic blood pressure 
similarly showed greater importance for living donor 

recipients (21.2% vs. 16.7%). The most significant differ-
ence was observed in pre-transplant BMI, which contrib-
uted to predictions in deceased donor recipients (12.6%) 
but minimally in living donors (2.6%). Conversely, pre-
transplant HbA1c and post-transplant eGFR were signifi-
cantly more impacting for living donor outcomes (9.9% 
and 8.8%) compared to deceased donors (3.5% and 2.6%, 
respectively).

Discussion
Our study presents a significant advancement in post-
renal transplant care through the development of an XAI 
model for predicting hospital readmission within 30 days 
from discharge. From a clinical perspective, the model’s 
well performing capabilities (AUC 0.837) translate to 
practical utility in identifying high-risk patients who may 
benefit from optimized and focused monitoring and early 
intervention. These metrics significantly overcome the 
previous clinical prediction methods [15, 16], offering 
physicians more reliable risk assessment tools for post-
transplant management decisions.

Our observed readmission rate of 88.9% significantly 
exceeds previously reported ranges of 18–47% in trans-
plant literature [17]. This difference likely originates 
from several center-specific factors. First, our follow-up 
protocol involves intensive post-transplant monitoring 
with a low threshold for readmission, especially for the 

Fig. 1  Our machine learning pipeline implementation workflow
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laboratory abnormalities that might be managed out-
patient elsewhere. Second, our operational definition of 
“readmission” includes all hospital encounters, including 
observation stays and emergency department visits with-
out formal admission, which many studies exclude. Third, 
our transplant center serves as a major regional trans-
plant facility for a large geographic area, in which captur-
ing readmissions that might occur at other institutions 
in more densely populated regions. Finally, the high pro-
portion of living donor recipients (85.2%) in our cohort 
may paradoxically lead to more aggressive intervention 
for minor complications given the elective nature of these 
transplants and heightened attention to outcomes. These 
factors are critical when interpreting our findings and 
comparing them to other centers.

From a clinical practice standpoint, our dual-approach 
interpretability framework using SHAP and LIME 
analyses transforms the complex machine learning out-
puts into actionable clinical key points and insights for 
the readers [18–20]. For physicians, this means that 
the model not only predicts readmission risk but also 
explains why specific patients are classified as high-risk, 
enabling more informed clinical decision-making. The 

identification of length of stay (38% contribution) and 
post-transplant systolic blood pressure (30% contribu-
tion) as primary predictors provides sloid, modifiable fac-
tors that clinicians can monitor and intervene upon.

The dominance of length of stay (38.0% contribu-
tion) and post-transplant systolic blood pressure (30.0% 
contribution) as predictors likely reflects their roles as 
integrative markers of overall patient status. Prolonged 
hospitalization often indicates a complicated periopera-
tive course, greater comorbidity burden, or challenges in 
achieving physiologic and immunologic stability, which 
are all predisposing to post-discharge complications. The 
relationship between post-transplant systolic hyperten-
sion and readmission risk may reflect several underly-
ing mechanisms: endothelial dysfunction affecting the 
allograft, intravascular volume changes indicating sub-
optimal graft function, medication non-adherence, or 
calcineurin inhibitor toxicity [17, 21]. The higher impor-
tance of pre-transplant BMI in deceased donor recipients 
(12.6% vs. 2.6% in living donors) likely reflects the immu-
nologic and metabolic challenges of obesity in the con-
text of organs subjected to ischemia-reperfusion injury 
and greater HLA mismatching. Similarly, the greater 

Fig. 2  SHAP XAI framework for distribution of feature effects on 30-day readmission risk
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importance of HbA1c and eGFR in living donor recipi-
ents suggests that metabolic and renal functional param-
eters may have stronger predictive value in the context of 
superior baseline graft quality. While our model identi-
fied length of hospital stay and post-transplant systolic 
blood pressure as primary statistical predictors, these 
associations should not be interpreted as directly modi-
fiable intervention targets without further investigation. 
These factors likely represent markers of underlying 
patient complexity rather than independent causal driv-
ers of readmission. For instance, extended hospital stays 
often reflect perioperative complications or pre-existing 
comorbidities rather than representing a modifiable 
factor itself. Similarly, elevated post-transplant blood 
pressure may indicate underlying vascular disease, medi-
cation adherence issues, or organ function challenges. 
Our findings should therefore guide risk stratification 
and resource allocation rather than suggesting that arti-
ficial manipulation of these parameters (e.g., prematurely 
discharging patients or aggressively lowering blood pres-
sure) would necessarily reduce readmission risk. Future 

interventional studies are required to determine which 
factors, if any, represent causal, modifiable targets for 
reducing readmission risk.

The application as a web-based clinical decision sup-
port tool addresses practical challenges in daily clinical 
workflow [22]. For specialized physicians and healthcare 
teams, this means real-time access to risk predictions 
during routine patient assessments, facilitating prompt 
clinical decision-making. The user-friendly interface 
minimizes the technological barrier often associated with 
AI tools, making it accessible to clinicians without spe-
cialized technical expertise.

A key clinical advantage of our model lies in its 
dynamic risk assessment capabilities. Unlike static 
clinical scoring systems, our model integrates multiple 
important post-transplant variables, enabling continuous 
risk reassessment as patient conditions change. This fea-
ture is especially valuable for concerned centers in tailor-
ing follow-up protocols and resource allocation based on 
individualized risk profiles.

Fig. 3  Translated clinical predictors and risk factors for 30-day readmission risk
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Table 3  Subgroup analysis of model performance and feature importance in living vs. Deceased donor transplantation
Characteristic Overall cohort (n = 588) Living donor recipients (n = 500) Deceased donor recipients (n = 87) P-value*
Clinical outcomes:
Readmission rate within 30 days (%) 88.9% 88.4% 92.0% 0.430
Mean hospital length of stay (days) 4.0 ± 4.1 3.9 ± 4.0 4.6 ± 4.6 0.259
Graft rejection episodes 110 (18.7%) 69 (13.8%) 41 (47.1%) 0.000
Model Performance Metrics:
AUC (95% CI) 0.837 (0.802–0.872) 0.787 (0.738–0.836) 0.762 (0.685–0.839) N/A
Sensitivity 0.388 0.402 0.412 N/A
Specificity 0.72 0.69 0.71 N/A
Accuracy 0.796 ± 0.050 0.778 ± 0.061 0.783 ± 0.058 N/A
Precision 0.629 ± 0.090 0.654 ± 0.082 0.643 ± 0.097 N/A
F1-Score 0.469 ± 0.105 0.453 ± 0.101 0.498 ± 0.112 N/A
Feature Importance (SHAP Contribution %):
Length of hospital stay 20.6% 24.5% 20.1% N/A
Post-transplant systolic BP 17.2% 21.2% 16.7% N/A
Pre-transplant BMI 9.8% 2.6% 12.6% N/A
Pre-transplant diastolic BP 3.7% 1.5% 2.9% N/A
Post-transplant BMI 3.2% 5.4% 3.3% N/A
Pre-transplant HbA1c 1.5% 9.9% 3.5% N/A
Post-transplant eGFR 2.6% 8.8% 2.6% N/A
Notes: * p-values compare living vs. deceased donor groups using appropriate statistical tests: t-test or Mann-Whitney U test for continuous variables depending on 
distribution normality; Chi-square or Fisher’s exact test for categorical variables. N/A indicates comparison was not performed for this metric

Fig. 4  Random cases assessment using LIME XAI framework
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Our findings regarding laboratory parameters and clin-
ical trajectories offer practical points for post-transplant 
monitoring. The model’s ability to capture significant 
changes in eGFR (pre: 13.3 ± 18.5; post: 19.2 ± 18.5 mL/
min/1.73  m²) and HbA1c levels (pre: 5.8 ± 1.5%; post: 
6.2 ± 1.6%) provides clinicians with objective thresholds 
for risk stratification. These values and findings, when 
considered alongside traditional clinical assessments, 
optimize the precision of post-transplant care planning.

Several limitations warrant consideration from a clini-
cal perspective. While our sample size of 588 patients 
provides well enough statistical power for our study 
design and implementation workflow, the single-center 
nature may not capture variations in practice patterns 
across different medical centers, especially in different 
countries and different regions from all over the world. 
In addition to that, center-specific protocols and patient 
populations may affect the readmission patterns, sug-
gesting the need for local validation before widespread 
implementation [23, 24].

Future clinical applications should focus on prospec-
tive validation across diverse transplant centers. Particu-
lar attention should be paid to how the model performs 
across different patient populations, healthcare systems, 
and practice patterns. Integration with existing electronic 

health records and clinical workflows would further 
enhance the model’s utility in daily practice [24, 25].

The single-center nature of our study represents a 
significant limitation that must be acknowledged. Our 
center’s unique practice patterns, specifically our high 
proportion of living donor transplantations (85.2%), 
may limit direct generalizability to centers with different 
donor demographics. Also, center-specific protocols for 
post-transplant management, readmission thresholds, 
and follow-up schedules likely impact the observed out-
comes. While our subgroup analysis attempted to address 
differences between living and deceased donor recipi-
ents, the relatively small deceased donor sample (n = 87) 
limits definitive conclusions. External validation across 
multiple transplant centers with diverse patient popula-
tions and practice patterns is essential before broad clini-
cal implementation. Centers considering adoption of our 
approach should first validate performance in their spe-
cific populations and consider recalibrating the model 
using local data.

The significant improvement in predictive capabili-
ties offered by our model, combined with its clinical 
interpretability, positions it as a valuable addition to the 
transplant physician’s toolkit. By providing quantifiable, 
evidence-based risk assessment, the model supports 

Fig. 5  Feature importance comparison between living and deceased donor recipients
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clinical judgment in optimizing post-transplant care 
strategies. As transplant medicine continues to evolve, 
such AI-driven tools will become increasingly important 
in achieving improved patient outcomes through person-
alized care approaches.

Conclusions
Our machine learning model demonstrates that post-
transplant readmission risk can be accurately predicted 
through an XAI framework based approach that priori-
tizes both performance and clinical interpretability. The 
identification of length of stay and post-transplant sys-
tolic blood pressure as dominant predictive factors pro-
vides actionable highlights and clinical considerations for 
the transplant care teams, suggesting specific targets for 
intervention and monitoring protocols. The successful 
deployment of this predictive tool as a web-based appli-
cation marks an important step toward practical integra-
tion of AI in transplant medicine. By combining gradient 
boosting’s predictive power with transparent reasoning 
through SHAP and LIME analyses, our model bridges the 
gap between advanced analytics and clinical utility, offer-
ing physicians readily interpretable decision support. 
Looking ahead, this work demonstrates an important 
foundation and core for developing center-specific risk 
prediction tools in transplant medicine. Further studies 
should focus on external validation across multiple spe-
cialized centers and different healthcare settings in dif-
ferent countries and various regions, also including the 
integration with existing clinical workflows.

Abbreviations
AI	� Artificial Intelligence
AUC	� Area Under the Curve
BMI	� Body Mass Index
BP	� Blood Pressure
eGFR	� Estimated Glomerular Filtration Rate
HbA1c	� Glycated Hemoglobin
IQR	� Interquartile Range
KAIMRC	� King Abdullah International Medical Research Center
KNN	� K-Nearest Neighbors
LIME	� Local Interpretable Model-agnostic Explanations
ROC	� Receiver Operating Characteristic
SD	� Standard Deviation
SHAP	� SHapley Additive exPlanations
SVM	� Support Vector Machine
XAI	� Explainable Artificial Intelligence
XGBoost	� eXtreme Gradient Boosting

Acknowledgements
Not applicable.

Author contributions
NA conceived and designed the study, supervised the project, and wrote 
the manuscript. OIA, MOA, ZMA, ZMH, KMA, and AMA contributed to data 
collection, data analysis, and manuscript review. AYA provided technical 
expertise in machine learning implementation, assisted with model 
development, and contributed to manuscript writing and revision. All authors 
have read and approved the final version of the manuscript.

Funding
The study has received only funding for covering the open access fees 
of publication from King Abdullah International Medical Research Center 
(KAIMRC).

Data availability
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The proposed study protocol has been approved and granted the necessary 
ethical approvals by the institutional review board (IRB) committee at 
King Abdullah International Medical Research Center (KAIMRC) assigned 
to protocol number: NRC23R/730/11. The need for informed consent from 
participants was waived in accordance with the IRB approval of KAIMRC. Our 
study investigations and methods was conducted in compliance with the 
Helsinki Declaration.

Consent for publication
Not Applicable.

Competing interests
The authors declare no competing interests.

Author details
1Hepatobiliary Science and Organ Transplant Center, King Abdulaziz 
Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi 
Arabia
2King Abdullah International Medical Research Center (KAIMRC), Riyadh, 
Saudi Arabia
3King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), 
Riyadh, Saudi Arabia
4Medical Big Data Research Center, SNU Medical Research Center, Seoul 
National University (SNU), Seoul, South Korea

Received: 13 February 2025 / Accepted: 15 April 2025

References
1.	 Hogan J, Arenson MD, Adhikary SM, Li K, Zhang X, Zhang R, Valdez JN, Lynch 

RJ, Sun J, Adams AB, Patzer RE. Assessing predictors of early and late hospital 
readmission after kidney transplantation. Transplant Direct. 2019;5(8), e479. ​h​
t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​9​7​​/​T​​X​D​.​​0​0​0​​0​0​0​0​​0​0​​0​0​0​0​9​1​8

2.	 Kim SH, Baird GL, Bayliss G, Merhi B, Osband A, Gohh R, Morrissey PE. A 
single-center analysis of early readmission after renal transplantation. Clin 
Transplant. 2019;33(5):e13520. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​1​1​​/​c​​t​r​.​1​3​5​2​0

3.	 Oikonomou EK, Khera R. Machine learning in precision diabetes care and 
cardiovascular risk prediction. Cardiovasc Diabetol. 2023;22(1):259.

4.	 Xu H, Ma Y, Zhuang Y, Zheng Y, Du Z, Zhou X. Machine learning-based risk 
prediction model construction of difficult weaning in ICU patients with 
mechanical ventilation. Sci Rep. 2024;14(1):20875.

5.	 Tavares MG, Cristelli MP, Ivani de Paula M, Viana L, Felipe CR, Proença H, 
Aguiar W, Wagner Santos D, Tedesco-Silva Junior H, Medina Pestana JO. Early 
hospital readmission after kidney transplantation under a public health care 
system. Clin Transplant 2019;33(3):e13467. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​1​1​​/​c​​t​r​.​1​3​4​6​7

6.	 Li AH, Lam NN, Naylor KL, Garg AX, Knoll GA, Kim SJ. Early hospital readmis-
sions after transplantation: burden, causes, and consequences. Transplanta-
tion. 2016;100(4):713–8. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​9​7​​/​T​​P​.​0​​0​0​0​​0​0​0​0​​0​0​​0​0​0​9​1​7

7.	 Chahine Y, Magoon MJ, Maidu B, Del Álamo JC, Boyle PM, Akoum N. Machine 
learning and the conundrum of stroke risk prediction. Arrhythmia Electro-
physiol Rev. 2023;12:e07.

8.	 Rosenbacke R, Melhus Å, McKee M, Stuckler D. How explainable artificial 
intelligence can increase or decrease clinicians’ trust in AI applications in 
health care: systematic review. Jmir Ai. 2024;3:e53207.

9.	 Correction. The efficacy of machine learning models in lung cancer risk 
prediction with explainability. PLoS ONE. 2024;19(9):e0310604.

https://doi.org/10.1097/TXD.0000000000000918
https://doi.org/10.1097/TXD.0000000000000918
https://doi.org/10.1111/ctr.13520
https://doi.org/10.1111/ctr.13467
https://doi.org/10.1097/TP.0000000000000917


Page 12 of 12Alnazari et al. BMC Nephrology          (2025) 26:203 

10.	 Khushal R, Fatima U. Fuzzy logic and machine learning for diabetes risk 
prediction using modifiable factors. Int J Adv Appl Sci. 2024;11:225–31. ​h​t​t​p​​s​:​
/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​2​1​8​3​​3​/​​i​j​a​a​s​.​2​0​2​4​.​1​2​.​0​2​5.

11.	 Sun Q, Akman A, Schuller BWJATCH. Explainable artificial intelligence for 
medical applications: A review. 2024.

12.	 Zhang Y, Weng Y, Lund J. Applications of explainable artificial intelligence in 
diagnosis and surgery. Diagnostics (Basel Switzerland). 2022;12(2).

13.	 González-Alday R, García-Cuesta E, Kulikowski CA, Maojo VJAS. A Scoping 
Review on the Progress, Applicability, and Future of Explainable Artificial 
Intelligence in Medicine. 2023.

14.	 Collins GS, Moons KGM, Dhiman P, Riley RD, Beam AL, Van Calster B, Ghassemi 
M, Liu X, Reitsma JB, van Smeden M, Boulesteix AL, Camaradou JC, Celi LA, 
Denaxas S, Denniston AK, Glocker B, Golub RM, Harvey H, Heinze G, Hoffman 
MM, Logullo P. TRIPOD+AI statement: updated guidance for reporting clinical 
prediction models that use regression or machine learning methods. BMJ 
(Clinical research ed.). 2024;385:e078378. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​3​6​​/​b​​m​j​-​2​0​2​3​-​0​
7​8​3​7​8

15.	 Al Moussawy M, Lakkis ZS, Ansari ZA, Cherukuri AR, Abou-Daya KIJFT. Trans-
formative Potential Artif Intell Solid Organ Transplantation. 2024;3:1361491.

16.	 Souza A, Stubbs A, Hesselink D, Baan C, Boer K. 249.1: Interpretable prediction 
of kidney allograft rejection using machine learning: A comparison between 
linear and non-linear models. Transplantation. 2024;108. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​
9​7​​/​0​​1​.​t​​p​.​0​​0​0​1​0​​6​4​​8​3​6​.​4​4​7​6​6​.​9​5.

17.	 Iqbal K, Hasanain M, Rathore SS, Iqbal A, Kazmi SK, Yasmin F, Koritala T, Thong-
prayoon C, Surani S. Incidence, predictors, and outcomes of early hospital 
readmissions after kidney transplantation: systemic review and meta-analysis. 
Front Med. 2022;9:1038315. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​3​8​9​​/​f​​m​e​d​.​2​0​2​2​.​1​0​3​8​3​1​5

18.	 Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K, Scardapane S, 
Spinelli I, Mahmud M, Hussain A. Interpreting black-box models: a review on 
explainable artificial intelligence. Cognit Comput. 2023;16. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​
1​0​0​7​​/​s​​1​2​5​5​9​-​0​2​3​-​1​0​1​7​9​-​8.

19.	 Ratti E, Graves M. Explainable machine learning practices: opening another 
black box for reliable medical AI. AI Ethics. 2022;2:1–14. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​0​
7​​/​s​​4​3​6​8​1​-​0​2​2​-​0​0​1​4​1​-​z.

20.	 Srinivasu PN, Sandhya N, Jhaveri R, Raut R. From blackbox to explainable AI in 
healthcare: existing tools and case studies. Mob Inf Syst. 2022;2022:1–20. ​h​t​t​p​
s​:​​​/​​/​d​o​​i​.​​o​r​​g​​/​​1​0​​.​1​1​​​5​5​​/​2​​0​2​2​/​8​1​6​7​8​2​1.

21.	 McAdams-DeMarco MA, Law A, Salter ML, Chow E, Grams M, Walston J, et 
al. Frailty and early hospital readmission after kidney transplantation. Am 
J Transplantation: Official J Am Soc Transplantation Am Soc Transpl Surg. 
2013;13(8):2091–5.

22.	 Gotlieb N, Azhie A, Sharma D, Spann A, Suo N-J, Tran J, et al. The promise of 
machine learning applications in solid organ transplantation. Npj Digit Med. 
2022;5:89.

23.	 Fabreti-Oliveira RA, Nascimento E, de Melo Santos LH, de Oliveira Santos MR, 
Veloso AA. Predicting kidney allograft survival with explainable machine 
learning. Transpl Immunol. 2024;85:102057.

24.	 Ali H, Shroff A, Fülöp T, Molnar MZ, Sharif A, Burke B, et al. Artificial intelligence 
assisted risk prediction in organ transplantation: a UK Live-Donor kidney 
transplant outcome prediction tool. Ren Fail. 2025;47(1):2431147.

25.	 Peloso A, Naesens M, Thaunat O. The dawn of a new era in kidney trans-
plantation: promises and limitations of artificial intelligence for precision 
diagnostics. Transpl International: Official J Eur Soc Organ Transplantation. 
2023;36:12010.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.21833/ijaas.2024.12.025
https://doi.org/10.21833/ijaas.2024.12.025
https://doi.org/10.1136/bmj-2023-078378
https://doi.org/10.1136/bmj-2023-078378
https://doi.org/10.1097/01.tp.0001064836.44766.95
https://doi.org/10.1097/01.tp.0001064836.44766.95
https://doi.org/10.3389/fmed.2022.1038315
https://doi.org/10.1007/s12559-023-10179-8
https://doi.org/10.1007/s12559-023-10179-8
https://doi.org/10.1007/s43681-022-00141-z
https://doi.org/10.1007/s43681-022-00141-z
https://doi.org/10.1155/2022/8167821
https://doi.org/10.1155/2022/8167821

	﻿Development of explainable artificial intelligence based machine learning model for predicting 30-day hospital readmission after renal transplantation
	﻿Abstract
	﻿Background
	﻿Methods
	﻿Study design and population
	﻿Data collection and processing
	﻿Model development pipeline
	﻿Algorithm selection and training
	﻿Model interpretability framework
	﻿Deployment architecture
	﻿Statistical analysis framework

	﻿Results
	﻿Study population characteristics
	﻿Model performance and algorithm performance
	﻿Implementation pipeline architecture and model deployment
	﻿Feature importance analysis and risk stratification hierarchy
	﻿Feature effect distribution
	﻿Model validation through random cases assessment
	﻿Subgroup analysis of living and deceased donor transplantations

	﻿Discussion
	﻿Conclusions
	﻿References


