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Abstract
Background Acute kidney injury (AKI) is a common clinical syndrome, especially in the intensive care unit (ICU), with 
an incidence of more than 50% and in-hospital mortality of 30%. Continuous renal replacement therapy (CRRT) is an 
important supportive treatment for patients with AKI (Patel in Trauma Surg Acute Care Open e001381, 2024). Citrate 
is the preferred anticoagulant for critically ill patients requiring CRRT. Unfortunately, such patients may be confronted 
with citrate accumulation during citrate anticoagulation.

Methods The MIMIC-IV2.2 database was used to extract data of patients undergoing CRRT who opted for citrate 
anticoagulation during ICU admission, including 883 critically ill patients. These 883 patients were randomized into 
training (n = 618) and Internal validation (n = 265) groups at a ratio of 7:3. Least Absolute Shrinkage and Selection 
Operator(LASSO)-logistic regression was utilized to screen the variables and construct the prediction model, followed 
by the plotting of the nomogram. Then, Utilizing the retrospective data from the ICU at Jiangbei Hospital in Nanjing, 
China, from 2014 to 2024 (n = 200) for external model validation, the model was evaluated with discriminant analysis, 
calibration curves, decision curve analysis, and rationality analysis.

Results A total of 883 critically ill patients undergoing CRRT were included, consisting of 542 males and 341 females, 
with a mean age of 65 ± 14 years. Additionally, there were 618 patients in the training set and 265 in the validation 
set. A total of 47 independent variables were obtained, among which 15 independent variables were screened with 
LASSO regression and included in the multivariate logistic analysis. The five risk factors ultimately included in the 
prediction model were height, hepatic insufficiency, mechanical ventilation, prefilter replacement rate, and albumin. 
The area under the receiver operating characteristic curve (ROC) of the model was 0.758 (0.701–0.816), 0.747 (0.678–
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Background
CRRT is widely used for the treatment of critically ill 
patients with aAKI. As reported, approximately 5−10% 
of AKI patients require CRRT during ICU admission [2], 
with a mortality rate of 30−70% [3]. In clinical practice, 
heparin and citrate are the two main anticoagulants for 
CRRT. Compared to heparin anticoagulation, citrate 
anticoagulation is associated with a lower risk of circuit 
loss, filter failure, bleeding, and heparin-induced throm-
bocytopenia [4, 5]. Therefore, the 2012 Kidney Disease 
Improving Global Outcomes guidelines recommend 
citrate anticoagulation as the first choice for CRRT in 
critically ill patients without contraindications to citrate 
[6].

Citrate, which is weakly acidic, is mainly metabolized 
in the citric acid (Krebs or tricarboxylic acid) cycle in the 
liver, kidneys, and muscle, thus yielding bicarbonate. The 
metabolism of citric acid, however, becomes saturated. If 
the infusion of citric acid exceeds the body’s metabolic 
capacity, it will result in accumulation of citrate [7]. At 
present, routine monitoring of citrate concentration is 
lacking. Accordingly, citrate accumulation is generally 
diagnosed by a total calcium/ionized calcium ratio of 
≧ 2.5. Citrate accumulation can manifest as high anion 
gap (AG) acidosis, hypocalcemia, and elevated lactate 
concentration [8]. Several retrospective studies have 
reported that the incidence of citrate accumulation in 
patients with citrate anticoagulation for CRRT was in the 
range of 2.9−23.2% [7, 8], with a very high mortality rate 
of 40−100% [7, 9].

However, there is a lack of effective tools to predict 
the occurrence of citrate accumulation in patients with 
citrate anticoagulation for CRRT during the ICU admis-
sion. The aim of this study was to identify independent 
risk factors associated with citric acid accumulation in 
ICU patients and to develop a predictive model repre-
sented by a nomogram. This holds considerable signifi-
cance for guiding the formulation of appropriate initial 
CRRT prescriptions in clinical practice.

Methods
Data source and ethics statement
The Medical Information Mart for Intensive Care 
(MIMIC)-IV v2.2 database ( h t t p  s : /  / p h y  s i  o n e  t . o  r g / c  o n  t e 
n t / m i m i c i v / 2 . 2 /) is a publicly available critical care data-
base collaboratively developed by the Massachusetts 
Institute of Technology(MIT) Laboratory of Computa-
tional Physiology, Beth Israel Deaconess Medical Center 
(BIDMC), and Philips. The MIMIC-IV database has sev-
eral improvements based on MIMIC-III, including data 
update and partial table reconstruction, which collects 
the clinical data of over 190,000 patients and 450,000 hos-
pital records in BIDMC from 2008 to 2019 and records 
detailed information on the demographics, laboratory 
tests, medications, vital signs, surgery, disease diagno-
sis, medication management, and follow-up survival sta-
tus of patients. Our study was a retrospective study, he 
training set and internal validation set data are sourced 
from MIMIC-IV v2.2, while the external validation set is 
sourced from retrospective data of the ICU single-center 
records from 2014 to 2024 at Jiangbei Hospital, Nanjing, 
China. We had completed the necessary courses and indi-
vidual training exams for accessing and using the data-
base, obtained the corresponding certificate (Certificate 
No. 62661460), and gained permission to access the data-
base. The MIMIC-IV database is a publicly available data-
set that has undergone de-identification processing, The 
collection of the original data was conducted under IRB 
protocol 2001-P-001699/14, which granted exemption 
from informed consent for retrospective analysis of de-
identified data. This study strictly adhered to the Health 
Insurance Portability and Accountability Act (HIPAA) 
Safe Harbor provisions. As a secondary analysis of exist-
ing anonymized data, this study was exempt from addi-
tional ethical review by our Institutional Review Board. 
Additionally, the external validation data uses de-identi-
fied medical records of ICU inpatients at Jiangbei Hospi-
tal in Nanjing, China, from the period of 2014–2024. The 
data extraction process did not include any information 
that could directly or indirectly identify patient identities. 

0.817), and 0.714 (0.632–0.810) for the training set, internal validation set, and external validation set, respectively. 
The calibration curves in the training set and internal/external validation sets showed a high degree of consistency 
between predicted values and observed values (according to the Hosmer-Lemeshow test, the P-values were 0.7673, 
0.2401, and 0.4512 for the training set, internal validation set, and external validation set, respectively). In addition, the 
Decision-Curve(DCA) revealed that the model had good clinical applicability. Nomo-score comparisons exhibited the 
rationality of the model.

Conclusion The model developed based on LASSO-logistic regression can reliably predict the risk of citrate 
accumulation in critically ill patients with citrate anticoagulation for CRRT, providing valuable guidance for the 
application of early measures to prevent the occurrence of citrate accumulation and to improve the prognosis of 
patients.
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According to the “Ethical Review Measures for Biomedi-
cal Research Involving Human Subjects” and the regu-
lations of the hospital’s ethics committee(Registration 
Number: BA-2025-01) (figure S1).

Participants
CRRT records of 1,406 admissions to ICUs for citrate 
anticoagulation of 1,308 patients were extracted from 
the mimiciv_derived module of MIMIC-IV v2.2. As 
well as the retrospective data of 230 CRRT citrate anti-
coagulation patients from the ICU of Nanjing Jiang-
bei Hospital in China from 2014 to 2024, The inclusion 
criteria were as follows: (1) a prescription for Regional 
Citrate Anticoagulation - Continuous Renal Replacement 
Therapy(RCA-CRRT) for renal replacement therapy; 
(2)The CRRT procedure is conducted throughout the 
patient’s ICU admission.Exclusion criteria for partici-
pants were as follows: (1) patients younger than 18 years 
old; (2) CRRT patients with multiple ICU admissions for 
citrate anticoagulation, with only the record of the first 
ICU admission retained; (3) participants with incomplete 
data; and (4) patients with ICU stay < 24 h. as well as the 
retrospective data of 230 CRRT citrate anticoagulation 
patients from the ICU of Nanjing Jiangbei Hospital in 
China from 2014 to 2024. The process of patient selection 
is displayed in Fig. 1.

Data extraction
Participant clinical data was extracted using Navicat 
Premium software (version 16.0; https: navicat.com.cn) 
from the MIMIC-IV database and the electronic medi-
cal record system of the ICU at the Jiangbei Hospital in 
Nanjing, China.Data on the first ICU admission were 
collected, such as Age, Gender, Height, Weight, Com-
plications (Sepsis, Shock, Diabetes, Mechanical ventila-
tion, Hepatic insufficiency, AKI, Chronic kidney disease 
[CKD]), CRRT mode, Blood flow rate, Citrate rate, Dialy-
sate rate, Prefilter replacement rate, Postfilter replace-
ment rate, Total replacement rate, TMP(Transmembrane 
pressure), Temperature, Heart rate, Mean arterial pres-
sure (MAP), Respiratory rate, Oxygen saturation (SpO2), 
White blood cells (WBC), Hemoglobin (Hgb), Plate-
lets (PLT), Hematocrit (HCT), Serum albumin, Total 
bilirubin (TBIL), Aspartate aminotransferase(AST), PH, 
Oxygen partial pressure (PaO2), Carbon dioxide partial 
pressure (PaCO2), Lactate (Lac), Prothrombin time (PT), 
Activated partial thromboplastin time (APTT), Eryth-
romycin use, Metformin use, Voriconazole use, Norepi-
nephrine dose, Epinephrine dose, Phenylephrine dose, 
Dopamine dose, Vasoactive-inotropic score (VIS), and 
Acute Physiology Score III (APSIII), which were used as 
independent variables (a total of 47 variables).

Statistical analysis
Continuous variables with normal distribution were 
expressed as mean ± standard deviation, and variables 
without normal distribution were presented as the 
median and the interquartile range. Categorical vari-
ables were summarized as the number of cases and per-
centage (%). Continuous variables were compared with 
the t-test or nonparametric test, while categorical vari-
ables were compared with the Pearsons chi-square test 
or Fisher’s exact test. When the data contained less than 
20% missing values, multiple interpolation was applied to 
the missing data, and data with more than 20% missing 
values were excluded. Forty-seven variables were finally 
identified. Baseline description and analysis of variance 
were performed with the compareGroups package and 
automatic identification. Tables with statistics were gen-
erated with the CBCgrps package. LASSO regression 
analysis was conducted with the glmnet package. Multi-
variate logistic regression analysis was carried out with 
the glm package. Forest plot 1 was generated with the 
forestplot package. Discriminant analysis was performed 
with the pROC package. The confusion Matrix uses the 
caret package. Calibration curves were produced with 
the val.prob function in the rms package and the cali-
brate function. The ResourceSelection package was used 
for the Hosmer-Lemeshow test, and the dcurves pack-
age was utilized for decision curve analysis (DCA). The 
nomogram was obtained with the rms package.

Nomogram construction and validation
The development and validation of a multivariable pre-
diction model were reported per the Transparent Report-
ing of a Multivariable Prediction Model for Individual 
Prognosis or Diagnosis [10] statement. Based on inclu-
sion criteria and exclusion criteria, 883 patients were 
ultimately included in our study from the MIMIC-IV 
database.These patients were randomized into train-
ing (n = 618) and validation (n = 265) sets at a ratio of 
7:3. Predictive variables were selected in two steps.Fur-
thermore, the ICU single-center data from the Jiangbei 
Hospital in Nanjing, China, served as an external valida-
tion (n = 200). First, LASSO regression analysis [11] was 
utilized to determine potential confounders associated 
with the probability of citrate accumulation in critically 
ill patients with citrate anticoagulation for CRRT. The 
model was improved by constructing a penalty function 
with LASSO regression to obtain a simpler model that 
compressed some coefficients and set some coefficients 
to zero, thus retaining the advantage of subset shrink-
age. Second, multivariate logistic regression analysis was 
conducted with variables selected by LASSO regression, 
and variables with P < 0.05 were selected with the back-
ward method to construct the model [12]. The predic-
tion model was validated with discriminant evaluation, 



Page 4 of 13Hu et al. BMC Nephrology          (2025) 26:183 

calibration evaluation, clinical applicability evaluation, 
and rationality evaluation. In our study, the area under 
the receiver-operating characteristic (ROC) curve was 
used to evaluate the ability of the model to distinguish 
citrate accumulation from no citrate accumulation, and 
calibration curves were utilized to evaluate the con-
sistency between the risk predicted by the model and 
the actual incidence of citrate accumulation. DCA was 

conducted to assess the clinical applicability of the 
model, and Nomo-score plots were employed to evaluate 
the rationality of the model.

Study outcomes
The primary outcome was the probability of citrate 
accumulation in critically ill CRRT patients with topi-
cal citrate anticoagulation during CRRT after the ICU 

Fig. 1 Detailed process of patient selection
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admission. The blood gas and biochemical indicators 
were recorded in detail, and total calcium, AG, PH, and 
ionized calcium were detected, followed by the calcula-
tion of the total calcium/ionized calcium ratio. Of note, 
ionized calcium and total calcium examinations were 
conducted during CRRT and within half an hour of each 
other to calculate the total calcium/free calcium ratio. 
The diagnostic criteria for citrate accumulation were the 
total calcium/ionized calcium of ≧ 2.5 and high AG aci-
dosis (PH < 7.35, AG > 12) [13, 14].

Results
Characteristics of the included patients
From the MIMIC-IV 2.2 database, we retrospectively 
identified 1308 ICU patients undergoing CRRT and ulti-
mately included 883 eligible patients in the current study. 
From the single-center study of 230 patients in the ICU 
of Jiangbei Hospital, Nanjing, China, 200 were ultimately 
included in the external validation. Table 1 lists the base-
line characteristics of all included patients. There were 
no significant differences in 47 independent variables 
between the training and validation sets (P > 0.05), indi-
cating that the training and validation sets were well 
comparable.Citrate accumulation can increase hospital 
stay, ICU stay, length of stay, in-hospital mortality, and 
ICU mortality (Table S1).

Screening of independent variables for the prediction 
model
The data with over 20% missing values were removed. A 
total of 15 potential predictive variables with non-zero 
coefficients in the LASSO regression were selected from 
the 47 characteristic variables in the complete dataset. 
The lasso filter feature variables are shown in Fig. 2. The 
lambda.min was considered when features were selected 
to construct the prediction model. The identified poten-
tial predictive variables included hepatic insufficiency, 
albumin, PT, SpO2, MAP, APTT, PLT, dialysate rate, 
weight, prefilter replacement rate, WBC, PaCO2, height, 
Hgb, and mechanical ventilation, as shown in (Figure S2).

Construction of the prediction model
The logistic multivariate analysis included 15 character-
istic variables selected by LASSO regression. Ultimately, 
the independent risk factors identified were height [OR 
0.965, 95% CI (0.941–0.989)], hepatic insufficiency [OR 
2.885, 95% CI (1.685–5.023)], mechanical ventilation [OR 
0.511, 95% CI (0.296–0.894)], prefilter replacement rate 
[OR 0.999, 95% CI (0.999-1)], albumin [OR 1.625, 95% CI 
(1.127-2),355)] (Fig. 3) and a prediction model was con-
structed. To visually represent the model, an Nomodia-
gram was developed (Fig. 4). Each variable is assigned a 
score on the upper score axis corresponding to its contri-
bution to the risk probability of citric acid accumulation 

in CRRT patients treated with citric acid anticoagulation 
in the ICU as shown on the lower axis.For example, if 
AKI patients in ICU were treated with citric acid anti-
coagulation, their height was 150 cm, respiratory failure 
was treated with mechanical ventilation, hepatic insuf-
ficiency was monitored at Child-pughB grade, albu-
min was 30  mg/dl, and prefilter replacement rate was 
2000  ml/h, then the total score was 195, and the corre-
sponding rate of citric acid accumulation was 30%.

Validation of the prediction model
After bias correction, the analysis of the ROC curve 
indicates that the model’s AUC (95% confidence inter-
val [95%CI]) on the training set, internal validation set, 
and external validation set are 0.759 (0.701 − 0.816), 0.747 
(0.678 − 0.817), and 0.714 (0.632–0.810), respectively, 
demonstrating the model’s good discriminative ability 
(Fig. 5). The calibration curves in the training set, internal 
validation set, and external validation set are close to the 
diagonal, indicating a high degree of consistency between 
the model’s predicted results and the actual outcomes, 
with P-values obtained from the Hosmer-Lemeshow 
test being 0.7673, 0.2401, and 0.2514 for the training set 
and validation sets, respectively (Fig.  6). The confusion 
matrix heatmap has been improved to provide a more 
comprehensive assessment of the predictive model’s per-
formance. Upon analyzing the confusion matrix of the 
validation set, it was observed that there were 18 true 
positive samples, 61 true negative samples, and 13 false 
positive samples (Fig.  7). Additionally, there were 177 
false negative samples. Further calculations yielded an 
accuracy of 0.72, a sensitivity of 0.58, a specificity of 0.74, 
a recall rate of 0.58, and an F1 score of 0.33 (Table S2). 
Sensitivity reflects the model’s ability to correctly identify 
patients at risk of citrate accumulation (true positives), 
while specificity indicates its capacity to exclude patients 
without the condition (true negatives). The F1-score, as 
a harmonic mean of precision and recall, highlights the 
trade-off between false positives and false negatives.In 
the decision curve, the red line was drawn, indicating the 
use of nomograms to predict citrate accumulation. For 
comparison, the red (diagonal) and green (horizontal) 
lines represent two extreme scenarios (red line: full inter-
vention, green line: no intervention at all). The decision 
curve revealed that the net benefit of the model reached 
its maximum at threshold probabilities of 0.03 − 0.60, 
0.03 − 0.50, and 0.11–0.46 in the training set, internal val-
idation set, and external validation set (Fig. 8). To evalu-
ate the rationality of the model, the Nomo score chart 
was used to compare the Nomo score differences with 
and without citric acid accumulation. The results showed 
significant differences in the Nomo scores in both the 
validation and training sets, highlighting the good ratio-
nality of the nomogram (Figure S3).
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Variables Total
(n = 1083)

Training set
(n = 618)

Internal validation 
set(n = 265)

External validation 
set(n = 200)

P- 
value

Gender, n(%) 0.700
Female 412 (38.0%) 240 (38.8%) 240 (38.8%) 71 (35.5%)
Male 671 (62.0%) 378 (61.2%) 378 (61.2%) 129 (64.5%)
Age, years, median[IQR] 65.0 [54.5;74.0] 65.0 [54.0;75.0] 65.0 [54.0;75.0] 66.0 [56.0;75.0] 0.716
Weight, kg, median[IQR] 88.4 [73.2;104] 88.8 [73.6;104] 88.8 [73.6;104] 90.0 [74.8;108] 0.219
Height, cm, median[IQR] 170 [161;178] 170 [162;178] 170 [162;178] 170 [162;178] 0.767
Sepsis, n(%) 0.456
No 84 (7.76%) 53 (8.58%) 53 (8.58%) 12 (6.00%)
Yes 999 (92.2%) 565 (91.4%) 565 (91.4%) 188 (94.0%)
Shock, n(%) 0.636
No 101 (9.33%) 57 (9.22%) 57 (9.22%) 16 (8.00%)
Yes 982 (90.7%) 561 (90.8%) 561 (90.8%) 184 (92.0%)
Hepatic Insufficiency, n(%) 0.989
No 658 (60.8%) 375 (60.7%) 375 (60.7%) 121 (60.5%)
Yes 425 (39.2%) 243 (39.3%) 243 (39.3%) 79 (39.5%)
Mechanical Ventilation, n(%) 0.66
No 304 (28.1%) 168 (27.2%) 168 (27.2%) 56 (28.0%)
Yes 779 (71.9%) 450 (72.8%) 450 (72.8%) 144 (72.0%)
CVVH, n(%) 0.788
No 1031 (95.2%) 586 (94.8%) 586 (94.8%) 191 (95.5%)
Yes 52 (4.80%) 32 (5.18%) 32 (5.18%) 9 (4.50%)
CVVHD, n(%) 0.843
No 1060 (97.9%) 606 (98.1%) 606 (98.1%) 195 (97.5%)
Yes 23 (2.12%) 12 (1.94%) 12 (1.94%) 5 (2.50%)
CVVHDF, n(%) 0.93
No 75 (6.93%) 44 (7.12%) 44 (7.12%) 14 (7.00%)
Yes 1008 (93.1%) 574 (92.9%) 574 (92.9%) 186 (93.0%)
Diabetes, n(%) 0.591
No 649 (59.9%) 368 (59.5%) 368 (59.5%) 126 (63.0%)
Yes 434 (40.1%) 250 (40.5%) 250 (40.5%) 74 (37.0%)
Aki, n(%) 0.516
No 157 (14.5%) 83 (13.4%) 83 (13.4%) 32 (16.0%)
Yes 926 (85.5%) 535 (86.6%) 535 (86.6%) 168 (84.0%)
Crrt_parameter, ml/h, median[IQR]
Blood_flow 120.00 [120.00;150.00] 120.00 [120.00;150.00] 120.00 [120.00;150.00] 120.00 [120.00;150.00] 0.561
Citrate 180.00 [180.00;200.00] 180.00 [180.00;200.00] 180.00 [180.00;200.00] 180.00 [180.00;200.00] 0.787
Dialysate Rate 700 [500;1000] 700 [500;1000] 700 [500;1000] 800 [500;1000] 0.627
Postfilter Replacement Rate 200 [200;200] 200 [200;200] 200 [200;200] 200 [200;200] 0.382
Prefilter Replacement Rate 1500 [1200;1800] 1600 [1200;1800] 1600 [1200;1800] 1500 [1200;1800] 0.228
Replacement Rate 1600 [1400;2000] 1700 [1400;2000] 1700 [1400;2000] 1650 [1400;2000] 0.349
Vital_signs, median[IQR]
Map, mmHg 70.0 [58.0;84.0] 70.0 [58.0;83.0] 70.0 [58.0;83.0] 69.0 [56.0;82.2] 0.305
HR, bmp 95.0 [80.5;110] 95.5 [82.0;112] 95.5 [82.0;112] 94.0 [81.8;110] 0.147
Spo2,% 97.0 [93.0;100] 97.0 [93.0;100] 97.0 [93.0;100] 96.0 [93.0;99.0] 0.13
Laboratory test, median[IQR]
Wbc, k/ul 12.7 [8.20;18.7] 12.6 [8.22;18.5] 12.6 [8.22;18.5] 12.8 [8.43;19.8] 0.921
RR, insp/min 21.0 [16.0;25.0] 21.0 [16.0;25.0] 21.0 [16.0;25.0] 21.0 [16.0;25.2] 0.634
Plt, k/lu 154 [90.0;235] 156 [90.2;235] 156 [90.2;235] 158 [95.0;250] 0.244
Hgb, mg/dl 9.50 [8.00;11.3] 9.50 [8.00;11.3] 9.50 [8.00;11.3] 9.50 [8.20;11.1] 0.979
Hct,% 29.5 [25.0;35.2] 29.4 [25.1;35.3] 29.4 [25.1;35.3] 29.0 [24.8;34.7] 0.962
Albumin, mg/dl 2.80 [2.30;3.26] 2.80 [2.30;3.30] 2.80 [2.30;3.30] 2.80 [2.40;3.20] 0.953
Calciumtotal, mmol/L 8.10 [7.60;8.80] 8.10 [7.60;8.80] 8.10 [7.60;8.80] 8.10 [7.70;8.80] 0.831

Table 1 Baseline characteristics of participants
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Discussion
In the internal validation cohort, the prediction model 
constructed with five independent variables (including 
height, hepatic insufficiency, mechanical ventilation, pre-
filter replacement rate, and serum albumin) had a high 
value for predicting the occurrence of citrate accumula-
tion in patients with citrate anticoagulation for CRRT 
during the ICU admission. To our knowledge, this study 
is the first to construct a prediction model for the risk of 
citrate accumulation in patients with citrate anticoagu-
lation for CRRT during the ICU admission. The model’s 
AUC in the training set is 0.758 (0.701–0.816), in the 
internal validation set and external validation set, the 

AUC is 0.747 (0.678–0.817) and 0.714 (0.632–0.810). Fur-
ther results unveiled that this prediction model showed 
excellent discriminant power (Fig. 6), calibration (Fig. 7), 
clinical impact (Fig. 8), and rationality (Fig. S3). The con-
fusion matrix in the validation set demonstrated an accu-
racy of 0.72, sensitivity (recall) of 0.58, specificity of 0.74, 
and F1-score of 0.33. In clinical practice, a high sensitivity 
is particularly critical for life-threatening conditions like 
citrate accumulation, as missing true positives (FN = 177) 
may delay interventions and worsen outcomes. The 
elevated FN rate could stem from the following fac-
tors: ① Class Imbalance: The incidence of citrate accu-
mulation in our cohort was 11.2%, leading to a skewed 

Variables Total
(n = 1083)

Training set
(n = 618)

Internal validation 
set(n = 265)

External validation 
set(n = 200)

P- 
value

PH 7.32 [7.22;7.39] 7.32 [7.23;7.39] 7.32 [7.23;7.39] 7.31 [7.22;7.38] 0.59
Po2,mmHg 82.0 [50.0;152] 81.0 [50.0;154] 81.0 [50.0;154] 81.5 [49.0;142] 0.928
Co2,mmHg 40.0 [34.0;48.0] 40.0 [34.0;48.0] 40.0 [34.0;48.0] 41.0 [35.8;49.0] 0.698
Lac, mmol/L 2.40 [1.50;4.30] 2.40 [1.50;4.38] 2.40 [1.50;4.38] 2.25 [1.50;3.73] 0.662
PT, sec 17.1 [13.8;23.2] 17.0 [13.8;23.5] 17.0 [13.8;23.5] 16.5 [14.1;21.7] 0.908
APTT, sec 36.5 [30.2;48.3] 36.5 [29.6;48.0] 36.5 [29.6;48.0] 35.6 [30.3;49.2] 0.799
Anion_Gap, mmol/L 18.0 [15.0;23.0] 18.0 [15.0;23.0] 18.0 [15.0;23.0] 18.0 [15.0;22.2] 0.87
Tbil, umol/L 1.00 [0.50;3.45] 1.10 [0.50;3.38] 1.10 [0.50;3.38] 1.00 [0.50;3.10] 0.971
Alt, u/L 34.0 [17.0;125] 35.0 [17.0;120] 35.0 [17.0;120] 29.5 [17.0;103] 0.686
Ast, u/L 75.0 [33.0;246] 74.5 [33.0;241] 74.5 [33.0;241] 69.0 [33.8;232] 0.56
Metformin, n(%) 0.219
No 1077 (99.4%) 616 (99.7%) 616 (99.7%) 199 (99.5%)
Yes 6 (0.55%) 2 (0.32%) 2 (0.32%) 1 (0.50%)
Erythromycin, n(%) 0.744
No 1063 (98.2%) 607 (98.2%) 607 (98.2%) 195 (97.5%)
Yes 20 (1.85%) 11 (1.78%) 11 (1.78%) 5 (2.50%)
Vis Score 14.0 [5.00;27.0] 13.0 [5.00;27.8] 13.0 [5.00;27.8] 14.0 [5.00;26.0] 0.998
Apssiii 77.0 [63.0;94.0] 78.0 [64.0;94.0] 78.0 [64.0;94.0] 78.0 [63.0;92.2] 0.137
Hosp Day, d,median[IQR] 19.5 [9.92;33.7] 19.5 [9.66;33.5] 19.5 [9.66;33.5] 21.2 [10.9;34.8] 0.535
Icu Day, d,median[IQR] 9.59 [5.05;17.3] 9.51 [4.96;17.0] 9.51 [4.96;17.0] 9.94 [5.65;18.0] 0.685
Is Icu Dead, n(%) 0.832
No 601 (55.5%) 338 (54.8%) 338 (54.8%) 114 (57.0%)
Yes 481 (44.5%) 279 (45.2%) 279 (45.2%) 86 (43.0%)
Is Hosp Dead, n(%) 0.969
No 536 (49.5%) 304 (49.3%) 304 (49.3%) 99 (49.5%)
Yes 546 (50.5%) 313 (50.7%) 313 (50.7%) 101 (50.5%)
Death Within Hosp 28days, n(%) 0.926
No 602 (55.6%) 344 (55.8%) 344 (55.8%) 113 (56.5%)
Yes 480 (44.4%) 273 (44.2%) 273 (44.2%) 87 (43.5%)
Death Within Icu 28days, n(%) 0.705
No 558 (51.6%) 321 (52.0%) 321 (52.0%) 106 (53.0%)
Yes 524 (48.4%) 296 (48.0%) 296 (48.0%) 94 (47.0%)
Citrate_accumulation, n(%) 0.95
No 961 (88.7%) 550 (89.0%) 550 (89.0%) 177 (88.5%)
Yes 122 (11.3%) 68 (11.0%) 68 (11.0%) 23 (11.5%)
AKI, Chronic kidney disease (CKD), TMP(Transmembrane pressure), Mean arterial pressure (MAP), Oxygen saturation (SpO2), White blood cells (WBC), Hemoglobin 
(Hgb), Platelets (PLT), Hematocrit (HCT), Serum albumin, Total bilirubin (TBIL), Aspartate aminotransferase(AST), PH, Oxygen partial pressure (PaO2), Carbon dioxide 
partial pressure (PaCO2), Lactate (Lac), Prothrombin time (PT), Activated partial thromboplastin time (APTT), Vasoactive-inotropic score (VIS), and Acute Physiology 
Score III (APSIII)

Table 1 (continued) 
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distribution of outcomes. Models trained on imbalanced 
data often prioritize majority class prediction (negative 
outcomes). ② Threshold Selection: The default classifi-
cation threshold (0.5) may not align with clinical priori-
ties. Lowering the threshold (e.g., to 0.3) could improve 
sensitivity at the cost of increased false positives, which 
may be acceptable given the high stakes of missed cases. 
③ Feature Limitations: Key dynamic variables (e.g., real-
time citrate levels or lactate kinetics) were unavailable 
in the dataset, potentially limiting predictive accuracy.
Despite these limitations, the model’s AUC (0.747) and 

calibration performance suggest its utility in risk strati-
fication. To mitigate FN risks, clinicians could implement 
proactive monitoring (e.g., frequent calcium ratio checks) 
for patients classified as low-risk by the model but with 
high-risk clinical features (e.g., liver dysfunction). Future 
studies should explore: Data Balancing Techniques: 
Oversampling (e.g., SMOTE) or cost-sensitive learn-
ing to address class imbalance.Threshold Optimization: 
Adjusting classification thresholds based on clinical risk-
benefit trade-offsIntegration of Dynamic Biomarkers: 
Incorporating real-time citrate or lactate measurements 

Fig. 3 Forest plot of the multivariate logistic analysis. Independent variables with P < 0.05 (height, hepatic insufficiency, mechanical ventilation, prefilter 
replacement rate, and serum albumin) were screened with the backward method to construct the model

 

Fig. 2 Perioperative variable selection using a lasso logistic regression model. (A) Dotted vertical lines were depicted at the optimal values byusing the 
minimum criteria (lambda.min) and 1 SE of the minimum criteria (lambda.1se). (B) Lasso coeffcient profle of 47 vaniables. The coeficient profle is plotted 
according to the logarithmic sequence. Ten-fold cross-validation via minimum criteria was used to determinrpredictors of model resulted in four features 
with nonzero coeffcients
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to enhance predictive power.The independent variables 
for our model were all extracted from MIMIC-IV v2.2 
and ICU Electronic Medical Record System of Jiangbei 
Hospital, Nanjing, China, which included 1083 eligible 
patients. Since the independent predictive variables used 
can be easily collected or detected during hospitalization, 
they can be obtained during consultation and treatment. 
Among the variables included in the prediction model, 
some variables have been previously reported to be asso-
ciated with the occurrence of citrate accumulation, and 
some variables were newly identified in this study. This 
study integrated these variables into a multivariable 
model for risk prediction, allowing for the individualized 

assessment of the risk of citrate accumulation in patients 
with citrate anticoagulation and therapeutic adjustment 
in clinical practice.

Since citrate is metabolized mainly by the liver and 
minimally by skeletal muscle in the human body, citrate 
clearance decreases from hepatocyte necrosis and mito-
chondrial damage in the presence of liver failure. A meta-
analysis involving 10 observational studies and 1,241 
patients with liver failure exhibited an incidence rate of 
citrate accumulation of 12% in patients with liver failure, 
higher than that in patients without liver failure [15]. Sev-
eral studies have disclosed that lowering the initial citrate 
dose in patients with liver disease can prevent citrate 

Fig. 5 ROC curve and AUC of the predictive model. (A) The ROC in the training group. (B) The ROC in the Internal validation group. (C) The ROC in the 
External validation groupROC: receiver operating characteristic; AUC: area under the curve

 

Fig. 4 The nomogram for predicting the risk of citrate accumulation in patients underwent RCA-CRRT. Each level of predictor indicates a certain score. A 
total score was generated by a summary of the score of each predictor. The total score corresponds to the probability of citrate accumulation in critically 
ill patients with citrate anticoagulation for CRRT
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accumulation and toxicity [16]. The KDIGO guidelines 
also include liver failure as a contraindication to citrate 
anticoagulation, which was confirmed by our results 
that hepatic insufficiency (Hepatic insufficiency which 
were defined as total bilirubin was greater than 2 mg/dL 
or ChildpughB、Child-pughC) was a risk factor for the 
development of citrate accumulation (odds ratio [OR], 
2.885; 95%CI, 1.685 − 0235; P < 0.001), with an incidence 
rate of citrate accumulation of 11.2%. Therefore, for 
patients with liver dysfunction, the total calcium/ionized 
calcium ratio should be closely monitored because citrate 
accumulation is likely to occur during citrate anticoagu-
lation, and the dosage of citrate can be reduced or the 

mode of anticoagulation can be changed in the presence 
of citrate accumulation.

Citrate is predominantly converted to bicarbonate in 
the liver by the tricarboxylic acid cycle, which is one of 
the most important processes of aerobic respiration in 
cells and is dependent on the participation of oxygen. 
In the presence of intracellular hypoxia or tissue hypo-
perfusion, the tricarboxylic acid cycle cannot be carried 
out effectively, predisposing citrate accumulation [17]. A 
prior study revealed that PaO2 < 80 was a risk factor for 
citrate accumulation in patients with liver failure [18]. 
Another study demonstrated that the incidence of citric 
acid accumulation within 48  h was higher in hyperlac-
ticemia (Lac > 4.0mmol/L) compared to normal lactate 

Fig. 7 Confusion matrix map heat map. (A) Training set confusion matrix. (B) Verification set confusion matrix.True Positive (TP), True Negative(TN), False 
Positive(FP), False Ngeative(FN)

 

Fig. 6 Calibration plots of the predictive model. A Calibration curve of the model in the training set (P = 0.7673 in the Hosmer-Lemeshow test); B Calibra-
tion curve of the model in the internal validation set (P = 0.2401 in the Hosmer-Lemeshow test); C Calibration curve of the model in the External validation 
set (P = 0.2451 in the Hosmer-Lemeshow test)According to the Hosmer-Lemeshow test, P-values were > 0.05 in the training and validation sets, suggest-
ing no difference between the predicted probability of the model and the actual probability in the training and validation sets.The dashed line represents 
the original performance, and the solid dashed line represents the performance during internal validation by bootstrapping (B = 500 repetitions)
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(Lac < 2.0mmol/L), with rates of 6.33% and 0.77%, respec-
tively. The slope intercept of lactic acid kinetics within 
48 h was positive and significantly higher (+ 0.2 vs. -0.006 
mmol/L/h; p < 0.001), indicating that both initial elevated 
lactate concentration and lactate kinetics should be con-
sidered when assessing the risk of citrate accumulation 
[19]. Hyperlactatemia is dominated by type A hyperlacta-
temia and is associated with ischemia and hypoxia. Statis-
tically, approximately 60% of critically ill patients in ICUs 
require invasive mechanical ventilation [20]. Mechanical 
ventilation can effectively ameliorate hypoxemia, thereby 
repressing tissue hypoxia-induced hyperlactatemia and 
favoring the tricarboxylic acid cycle. Our study also 
strongly demonstrated that mechanical ventilation was a 
protective factor against citrate accumulation (OR, 0.55; 
95%CI 0.296 − 0.894; P = 0.017). Accordingly, prompt 
invasive mechanical ventilation in critically ill patients in 
ICUs may reduce the occurrence of citrate accumulation 
in the presence of hypoxemia.

Citrate-calcium complexes (CCC) are largely removed 
by the hemofilter [21]. CCC clearance is very high (up 
to 60%) because of their low molecular weight (298 Dal-
tons) associated with their high hydrosolubility. When 
the dialysate rate in the diffusive mode and the replace-
ment rate in the convective mode are higher, more citrate 
is cleared and less citrate is returned to the tricarboxylic 
acid cycle, thereby lowering the risk of citrate accumula-
tion [13]. A former study exhibited that citrate clearance 
was markedly higher in high-flux dialysis filters than in 
low-flux dialysis filters and that citrate was more effi-
ciently removed at higher replacement rates [22]. Our 
results also confirmed that the prefilter replacement 
rate did correlate with citrate accumulation (OR, 0.999; 
95%CI, 0.999 − 1.000; P = 0.005). Specifically, higher pre-
filter replacement rates were associated with higher 
citrate clearance and lower risk of citrate accumulation. 
Nevertheless, positive results were not observed in terms 

of dialysate rate in this study, which might be related to 
the low dialysate rate.

In the body, calcium exists in an ionized form (50%) or 
is bound to albumin (40%) or other ions (10%). Routine 
biochemical analysis determines total serum calcium and 
mostly uses colorimetric methods, such as Arsenazo III 
method and Ortho-cresolphthalein Complexone method. 
These methods detect the level of total calcium by 
enabling the release of calcium ions from protein-bound 
calcium and complex calcium in the blood samples and 
the reaction of calcium ions binding to staining agents. 
Blood gas analysis is used for the measurement of ionized 
calcium and uses the ion-selective electrode method. 
The elevated or lowered concentration of human serum 
albumin can affect total calcium concentrations in the 
biochemical analysis. Seemingly, an increase in human 
serum albumin concentrations can elevate total calcium 
concentrations measured by the biochemical analysis, 
thus overestimating the total calcium/ionized calcium 
ratio [23]. Several studies have confirmed that with the 
measurement of citrate concentration in blood as the 
gold standard, the lactalbumin-corrected total calcium/
ionized calcium ratio is superior to other surrogate mark-
ers (including the albumin-corrected total calcium/ion-
ized calcium ratio) in predicting citrate accumulation, 
suggesting that there is no need to correct total calcium 
levels with albumin [8]. Our study innovatively revealed 
that human serum albumin increased the risk of citrate 
accumulation, (OR, 1.625; 95%CI, 1.127–2.355; P = 0.01). 
At present, there are no articles or studies related to the 
mechanism by which serum albumin elevates the risk 
of citrate accumulation. Generally, high human serum 
albumin in ICU patients is associated with transfusion 
with human blood albumin. Nonetheless, it is currently 
unclear whether the transfusion of albumin increases 
the risk of citrate accumulation. Our study underscores 
that there is a need to be vigilant for the development of 
citrate accumulation in ICU patients with high human 

Fig. 8 DCA of the nomogram. (A) DCA in the training group. (B) DCA in the internal validation group. B)DCA in the External validation groupGreen-solid 
line: The patient does not apply the nomogram and the net benefit is zero; Red-solid line: All patients are treated by the nomogram. The area enclosed 
by the three lines presents the clinical utility of the nomogram. DCA: decision curve analysis
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serum albumin in the presence of citrate anticoagulation 
for CRRT.

Given that the risk of citrate accumulation is related to 
citrate concentrations, it is now generally accepted that 
the desired local anticoagulation effect can be achieved 
at a citrate concentration of 3.0 mmol/L. Intriguingly, the 
study by Poh et al. showed that a citrate concentration 
of 2.5 mmol/L had the same anticoagulant effect while 
significantly diminishing the incidence of hypocalcemia 
in the short-statured Asian population [24], implicating 
that short stature predisposes to a higher risk of citrate 
accumulation at the same amount of initial citrate con-
centration. Similarly, our prediction model also validated 
that height was a risk factor for citrate accumulation (OR, 
0.965; 95%CI, 0.041 − 0.989; P = 0.005).

Limitations
However, there are several limitations that need to be 
addressed in the current study. First, while the use of 
de-identified intensive care data from the MIMIC-IV 
database provides valuable insights, we acknowledge 
the inherent ethical challenges in retrospective studies 
involving critically ill patients. These patients are often 
unable to provide direct consent during data collection, 
and their vulnerability raises concerns about privacy and 
secondary use of data. Nevertheless, the MIMIC database 
addresses these issues through rigorous de-identification 
processes and restrictive access protocols. Researchers 
must complete CITI training and sign a data use agree-
ment to access the data, ensuring compliance with ethical 
standards. Second, due to database limitations, our study 
did not involve monitoring serum citrate concentrations, 
nor could it extract information about the usage dura-
tion, lifetime, and frequency of specific continuous renal 
replacement therapy (CRRT) filters, which might pres-
ent potential confounding factors affecting the develop-
ment of citrate accumulation. Third, incomplete data or 
patients with multiple admissions to the intensive care 
unit (ICU) may limit the general applicability of the study 
results. Fourth, as a retrospective study, patients with 
an ICU stay of less than 24 h were excluded, which may 
have the limitation of survivorship bias. Fifth, the confu-
sion matrix showed a high false-negative rate (FN = 177), 
with a sensitivity of 0.58 and an f1 score of 0.33 in the 
validation set. Although the model demonstrated moder-
ate discriminative ability (AUC = 0.747), the high FN rate 
indicates limitations in identifying true positive cases. 
Clinically, this could delay intervention for patients at 
risk of citrate accumulation, emphasizing the necessity of 
further optimizing the model. In summary, our findings 
suggest that our nomogram is effective in predicting the 
probability of citrate accumulation in critically ill patients 
undergoing continuous renal replacement therapy with 

citrate anticoagulation. Nonetheless, further prospective 
multicenter studies are needed to validate our results. 

Conclusion
This study constructed a nomogram with five easily 
accessible parameters to predict the occurrence of citrate 
accumulation during CRRT with citrate anticoagulation 
and internally validated this nomogram. This nomogram 
can predict the probability of citrate accumulation in 
critically ill patients during CRRT with citrate anticoagu-
lation, which enables the early identification of the occur-
rence of citrate accumulation and provides powerful 
guidance for clinical decision-making to improve patient 
prognosis.
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