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Abstract 

Long noncoding RNAs (lncRNAs) cover a large class of transcribed RNA molecules that are more than 200 nucleo-
tides in length. An increasing number of studies have shown that lncRNAs control gene expression through differ-
ent mechanisms and play important roles in a range of biological processes including growth, cell differentiation, 
proliferation, apoptosis, and invasion. TUG1 was originally discovered in a genomic screen of taurine-treated mouse 
retinal cells. Previous evidences pointed out that lncRNA TUG1 could inhibit apoptosis and the release of inflamma-
tory factors, improve mitochondrial function, thereby protecting cells from damage, and showing a protective role 
of TUG1 in diseases. Given that TUG1 has multiple targets and can interfere with multiple steps in the oncogenic 
process, it has been proposed as a therapeutic target. In this review, we summarize the research progress of lncRNA 
TUG1 in kidney diseases in the past 8 years, and discuss its related molecular mechanisms.
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Kidney disease with mild inflammation, proteinuria, and 
function decline,or diagnosed with objective measures 
of kidney structure damage have been recognized as a 
major global health burden [1]. As a complex multi gene 
disease, the interaction and expression regulation of mul-
tiple genes often affect the occurrence and development 
of the kidney disease. Epigenetics has become one of the 
important mechanisms involved in the occurrence and 
development of kidney diseases by regulating gene tran-
scription and translation [2].

lncRNAs cover a large class of transcribed RNA mol-
ecules that are more than 200 nucleotides in length [3–6]. 
In the past, non coding RNAs (ncRNAs) without the abil-
ity of coding protein were considered as non functional 
“junk” [7, 8]. However, increasing evidences have shown 
that lncRNAs control gene expression through differ-
ent mechanisms and play important roles in a range of 

biological processes including growth, cell differentiation, 
proliferation, apoptosis, and invasion [9, 10]. lncRNAs 
have multiple modes of action, but are generally consid-
ered as important transcriptional regulators [3] (Fig.  1). 
In the cell nuclues, lncRNAs can regulate transcription 
factors (TF) as transcriptional co-activator or inhibitor. 
Enhancer RNAs are considered a subtype of lncRNA that 
are transcribed from the enhancer region and physically 
involved in looping the enhancer and promoter regions 
to regulate transcription. Some lncRNAs can act through 
DNA methylation, chromatin modification, histone 
modifications and RNA methylation, and to silence or 
enhance target gene expression. Other lncRNAs inter-
fere with pre-mRNA splicing regulation [3, 11–14]. In 
the cytosol, lncRNAs can regulate mRNA expression by 
altering mRNA translation, stability, or by competing for 
microRNA binding [15–17]. Therefore, lncRNA is crucial 
in epigenetic regulation, gene transcription, gene transla-
tion, and mRNA processing, regulating various biological 
processes including in vivo balance, cell metabolism, pro-
liferation, apoptosis, and differentiation [18–20].

Among all lncRNAs related to kidney disease, taurine 
upregulated gene 1 (TUG1) is a rising star. More and 
more evidences show that TUG1 plays an important 
role in many kidney diseases, such as acute kidney injury 
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(AKI), chronic kidney disease (CKD), lupus nephritis 
(LN), diabetic kidney disease (DKD), renal interstitial 
fibrosis (RIF), glomerulonephritis, and renal cell car-
cinoma (RCC). The human lncRNA TUG1 gene (NCBI 
reference sequence NR_110492 transcript variant 1) is 
located on chromosome 22q12.2 and has 8 variant tran-
scripts with a length range of 5.2–7.6 kb, while the mouse 
lncRNA TUG1 locus is located on chromosome 11 and 
has three variant transcripts (a, b, and c) with a length 
range of 4.1–6.7 kb [4]. TUG1 was originally discovered 
in a genomic screen of taurine-treated mouse retinal 
cells [21, 22]. The regulatory mechanisms of TUG1 gene 
expression involve its role as a molecular sponge for vari-
ous microRNAs, which in turn modulate the expression 
of target genes or RBP affecting processes like cell pro-
liferation, apoptosis, migration, cell cycle changes and 
inflammation in distinct diseases (relevant to endocrinol-
ogy, metabolism, immunology, neurobiology) [23]. Pre-
vious evidences pointed out that lncRNA TUG1 could 
inhibit apoptosis and the release of inflammatory factors, 
improve mitochondrial function, thereby protecting cells 
from damage, showing a protective role of TUG1 in dis-
eases [24]. Given that TUG1 has multiple targets and can 
interfere with multiple steps in the oncogenic process, 
it has been proposed as a therapeutic target [3]. In this 
review, we summarize the research progress of lncRNA 
TUG1 in kidney diseases in the past 9 years, and discuss 
its related molecular mechanism.

The biological function of TUG1 in kidney diseases
Kidney disease is an important public health problem. 
Although the function of lncRNA TUG1 remains unclear 
and somewhat controversial, It still has many significant 
research implications in kidney diseases (Fig. 2, Table 1).

AKI
AKI is defined by abnormalities of kidney function with 
an increase in serum creatinine (SCr) by 50% within 
7 days or an increase in SCr by 0.3 mg/dl within 2 days 
or oliguria for ≥ 6  h. Models to mimic AKI in clinical 
practice usually include I/R, cisplatin and LPS. Grow-
ing evidences suggest that lncRNA TUG1 can regulate 
mRNA splicing, transcription, and expression of tar-
get genes by acting as microRNA (miRNA) sponges and 
protein scaffolds. Chen et  al. found that lncRNA TUG1 
alleviated I/R induced AKI via serving as a miR-494-3p 
sponge to disinhibit E-cadherin [18]. Chang et al. found 
that overexpressing lncRNA TUG1 attenuated the pro-
tective effect of total glucosides of paeony (TGP) on AKI 
induced by I/R via competing for miR-29 to improve 
phosphatase and tensin homolog (PTEN)  expression 
[26]. Xu et al. found that knocking down lncRNA TUG1 
by binding to miR-29 to silence PTEN can alleviate I/R-
induced autophagy and improve AKI in rats [27]. Sheng 
et  al. found that lncRNA TUG1 acts as an endogenous 
sponge of miR-144-3p, targeting nuclear respiratory fac-
tor 2 (Nrf2) to alleviate ischemia–reperfusion induced 

Fig. 1 lncRNAs regulate gene expressions at multiple levels.TF, transcription factor; SF, splicing factor; RBP, RNA binding protein
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Table 1. The regulatory machinery of TUG1 in kidney diseases
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AKI [28]. Zhao et  al. found that TUG1 alleviated LPS-
induced podocyte injury by competing for miR-197 to 
disinhibit mitogen activated protein kinase1 (MAPK1) 
[29]. lncRNA TUG1 can also regulate mRNA expres-
sion by altering mRNA stability. Sun et  al. found that 
lncRNA TUG1 attenuated I/R induced AKI by regulating 
the stability of Acyl-CoA synthetase long-chain family 4 
(ACSL4) mRNA via interacting with RNA-binding pro-
tein serine/arginine-rich splicing factor 1 (SRSF1) [30]. 

Nrf2 is one of the key TF regulating cells against oxida-
tive damage [31]. Wang et al. found that TUG1 can regu-
late Nrf2 as transcriptional co-activator to alleviate LPS 
induced AKI [32]. Amini N et aL. found that lncRNA 
TUG1 may be involved in process of gallic acid (GA) 
protecting the kidney against cisplatin-induced nephro-
toxicity through antioxidant, anti-inflammatory, and 
anti-apoptosis properties, however the mechanism was 
unclear [33].

Table 1. (continued)
Abbreviation H/R hypoxia/reoxygenation, HK-2 cell human kidney-2 cell (Human renal proximal tubular cell), I/R ischemia-reperfusion, TCMK-1 cells mouse renal 
tubular epithelial cells, LPS lipopolysaccharide, RMCs rat mesangial cells, CLP Cecal Ligation and Puncture,TGF transforming growth factor; UUO unilateral ureteral 
obstructive, HEK293T human embryonic kidney 293t, UIRI unilateral ischemiareperfusion injury, MCs mesangial cells, NRK-52E cell rat proximal renal epithelial cell, 
STZ streptozotocin,MPC5 mouse podocyte, HRMC human renal mesangial cell, CHF congestive heart failure;ccRCC  clear cell renal cell carcinoma, ACHN human renal 
cell adenocarcinoma,OS-RC-2 the human RCC cell lines

Fig. 2 The role of TUG1 in all kidney diseases. Abbreviation: ECM, extracellular matrix; ERS, endoplasmic reticulum stress; EMT, 
epithelial-mesenchymal transition
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CKD
CKD is defined by abnormalities of kidney function and/
or structure with implications for health and with a dura-
tion of > 3  months. Previous studies have shown that 
TUG1 participated in renal fibrosis and progression of 
CKD including RIF, DKD, LN, hypertensive nephropathy, 
glomerulonephritides.

RIF
RIF is characterized by excessive extracellular matrix 
deposition and involves EMT [34], and is a dynamically 
developing irreversible process leading to the destruc-
tion of tissue structure and loss of organ function [35, 
36]. Animal models were considered at day 3, day 7 or 
day 14 after UUO and day 10 after UIRI in mice because 
a-SMA, TGF-β and EMT were increased [34, 37]. Zhang 
et  al. found that silencing of the lncRNA TUG1 allevi-
ated EMT via serving as a miR-141-3p sponge to inhibit 
β-catenin [34]. Another study established by Zhang 
et  al. revealed that TUG1 inhibition upregulates miR-
140-3p to ameliorate renal fibrosis in hyperuricemic 
rats by inhibiting cathepsin D (CtsD) [37]. Zhang et  al. 
found that knockdown of lncRNA TUG1 by binding to 
miR-223-3p to aggravate klotho loss and worsen cellular 
senescence, whereas klotho-derived peptide 1 (KP1) can 
alleviate those fibrotic kidney disorders [38].

DKD
DKD begins with hyperglycemic stimuli, and is the most 
common and refractory microvascular complication of 
diabetes, and the main cause of end-stage renal disease 
(ESRD) worldwide. The main pathological characteristics 
of diabetes nephropathy are glomerulosclerosis, ECM 
deposition and tubulointerstitial fibrosis [39–41]. The 
concept of the renal tubular center of DKD emphasizes 
the key role of proximal tubule (PT) and tubulointersti-
tial part in the development of DKD [4, 42]. However, 
the glomerular theory, especially podocyte injury, has 
received particular attention in the process of DKD. The 
specific molecular characteristics and epigenetic modifi-
cation in recent studies indicate that TUG1 plays a key 
role in the progress of DKD.

As miRNA sponges, Duan et  al. found that lncRNA 
TUG1 acts as an endogenous sponge for miR-377, target-
ing peroxisome proliferator activated receptor gamma 
(PPAR γ) to alleviate mesangial cell proliferation and 
extracellular matrix accumulation in DN [43]. Wang 
et  al. found that lncRNA TUG1 improves renal fibrosis 
in diabetes nephropathy by inhibiting miR-21 and pro-
moting tissue inhibitor of metalloproteinase 3 (TIMP3) 
expression [44]. Wang et  al. found that lncRNA TUG1 
can inhibit the SIRT1 axis via endogenous competition 
of miR-29c-3p to regulate the injury of renal tubular 

epithelial cells mediated by endoplasmic reticulum stress 
in diabetes nephropathy models [39]. Wang et al. TUG1 
directly sponged to miR-145-5p alleviating kidney injury 
in DN mice and decreasing the inflammatory response 
and fibrosis of high glucose-stimulated HK-2 cells via 
dual-specificity phosphatase 6 (DUSP6) pathway [45]. 
As enhancer, Li et al. and Long et al. found that decreas-
ing of TUG1 are mainly located in glomerular podocytes 
of db/db mice and human diabetes kidney samples [3, 
4]. The high glucose environment promotes the carbo-
hydrate response element binding protein (ChREBP) 
inhibiting TUG1 transcription through the carbohy-
drate response elements (ChoRE) motif in the promoter 
region of TUG1 [46]. TUG1 acts as a bridge between the 
400  kb upstream enhancer and promoter of Ppargc1a, 
interacting with the TUG1 binding site upstream of the 
Ppargc1a promoter region, triggering transcriptional 
upregulation of Ppargc1a mRNA, and then regulating 
mitochondrial function in podocytes by targeting the 
transcription factor PPARγ coactivator 1α (PGC-1α, 
encoded by Ppargc1a) [3, 4]. The decrease of PGC-1α 
level will lead to damage of mitochondrial function, 
which will lead to energy depletion, increase of reactive 
oxygen species (ROS) production, and eventually lead to 
the development of diabetes nephropathy [3, 4, 47]. As 
translational inhibitor, Lei et al. found that increasing of 
TUG1 by astragaloside IV (AS-IV) can alleviated inflam-
mation and podocyte apoptosis via inhibiting TNFR-
associated factor 5 (TRAF5) in DN rats [48]. Zang et al. 
found that overexpression of TUG1 could suppress the 
proliferation and ECM accumulation of mesangial cells 
via inhibiting the protein levels of phosphatidylinositol 
3-kinase (PI3K) and protein kinase B (AKT) in diabetes 
nephropathy [49]. lncRNA TUG1 can also act through 
DNA methylation. Zheng et al. revealed that TUG1 over-
expression protected against STZ-induced renal lesions 
and renal fibrosis via inactivating MAPK1/extracellular 
signal-regulated kinase (ERK) signaling in DKD mouse in 
a methyltransferase 14 (METTL14)-dependent manner 
[50].

LN
LN is caused by autoimmune and inflammatory reactions 
which can activate complement cascades and proinflam-
matory pathways, injuring resident renal cells (includ-
ing renal tubular cells, podocytes, mesangial cells and 
endothelial cells) [51]. Accumulating evidence has shown 
that lncRNA TUG1 plays a key role in inhibiting cell 
injury and inflammatory regulation. Cao et al. found that 
up-regulating lncRNA TUG1 by pyrrolidine dithiocarba-
mate (PDTC) can inhibite NF-κB on renal injury in SLE 
mice [24]. Liu et  al. found that lncRNA TUG1 directly 
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sponged to miR‐153‐3p alleviating LPS‐induced HRMC 
injury through regulation of Bcl‐2 in LN [52].

Other kidney diseases related to TUG1
For those patients with abnormalities in kidney function 
and/or structure who meet neither the definition of AKI 
nor CKD, the term acute kidney disease (AKD), has been 
introduced as an important construct to address this. 
AKD is defined by abnormalities of kidney function and/
or structure with implications for health and with a dura-
tion of ≤ 3 months [25]. However, relevant study of TUG1 
in AKD is barely established.

Heart and kidney are closely related in the clinical syn-
drome of heart failure (HF). It is now clear that renal 
dysfunction often occurs in all phenotypes of HF, and it 
is associated with higher mortality and morbidity [53]. 
Despite the multifactorial pathophysiology of CKD, renal 
artery sclerosis and chronic renal ischemia leading to 
CKD with worsened prognosis can be seen everywhere in 
clinical practice. Zhang et al. found that lncRNA TUG1 
can promote angiotensin II(Ang II)–induced renal fibro-
sis via endogenous competition of miR-29b-3p by bind-
ing to mineralocorticoid receptor(MR) [54]. In the next 
year, Zhao et al. revealed that TUG1 was lowly expressed 
in CHF patients and was further downregulated in CHF 
patients complicated with progressive CKD [55].

Urinary non-coding RNAs are a promising non-inva-
sive tool that can reflect kidney disease, assist in appro-
priate diagnosis, and guide therapeutic choices [10, 
56–58]. Salazar Torres et  al. found that lncRNA TUG1 
is also present in urinary sediment, and its expression is 
significantly reduced in patients with biopsy-confirmed 
glomerulonephritides, especially those diagnosed with 
focal segmental glomerulosclerosis (FSGS) [11]. PGC-1 
α and mitochondrial transcription factor A (TFAM) can 
also be detected in urine and are significantly correlated 
with TUG1 expression levels [10]. However, there was 
no significant correlation between the expression level of 
TUG1 and glomerular filtration rate (GFR), proteinuria, 
or albuminuria. Further studies are required to evaluate 
urinary TUG1 as a potential biomarker of glomerulone-
phritides in early stage other than ESRD, and to deter-
mine its association with kidney dysfunction and patient 
prognosis.

RCC is one of the top ten deadly malignant tumors in 
the world. Accumulating evidences showed that TUG1 
play a crucial role in the progression of various cancers 
[59]. In earlier years, Wang et  al.and Zhang et  al. both 
found that the relative level of TUG1 was significantly 
higher in ccRCC tissues compared to the adjacent non-
tumor tissues [60, 61]. In recent years, Liu et  al. found 
that TUG1 can positively control yes-associated protein 
(YAP) expression and promote cell proliferation and 

migration in RCC by inhibiting miR-9 [62]. Li et al. found 
that knocking down TUG1 can inhibit the formation of 
RCC, including the proliferation, invasion, metastasis, 
and EMT process of ACHN cells, by suppressing vascular 
endothelial growth factor (VEGF) through endogenous 
competition of miR-299-3p [59].

Discussion and prospect
LncRNAs are ncRNA sequences, with cell or tissue speci-
ficity, poor conservation, and are expressed at low levels 
[63]. It plays an important role in multiple cellular pro-
cesses [64]. TUG1, as a novel lncRNA, is predominantly 
located in the nucleus, and has been shown to be abnor-
mally expressed in various types of kidney diseases, and 
its dysregulation is closely related to disease progres-
sion [65]. Current research are mainly focused on the 
abnormal expression of TUG1 in biopsies or cells, which 
could be used as potential biomarkers for the diagnosis, 
progression, and prognosis of kidney diseases and serve 
as therapeutic implications (Table  2). Interestingly, the 
results and conclusions seem inconsistent in AKI and 
CKD. Fortunately, the role of TUG1 in the study of DKD, 
LN, CKD with CHF and focal segmental glomerulone-
phritis is affirmative and protective despite of the differ-
ences of animal species and cell lines. However, the role 
of TUG1 in the studies of hypertensive nephropathy and 
RCC seems harmful. Nevertheless, it seems that TUG1 is 
closely related to podocyte injury, apoptosis, autophagy, 
regulation of inflammatory factors, mitochondrial bio-
energetics, ECM accumulation, ERS, EMT, cell prolifera-
tion, invasion and migration (Fig. 1).

In AKI, despite of animal strains and cell lines used 
in the experiments, 75% of the published literature 
identify TUG1 of renal protective. The inconsistency of 
the effects of TUG1 on autophagy, cell apoptosis, and 
inflammatory factors mainly depends on the degree 
of damages to cells and mouse kidneys, these may be 
due to the differences in animal species, ischemia or 
reperfusion time, or distinct disease states. In CKD 
caused by renal fibrosis, the inconsistency of the effects 
of TUG1 mainly depends on animal species, the con-
centration and intervention time of TGF-β1, some 
may lack cell counting kit-8 assay. Also independently 
bred animal will undergo genetic drift over time, which 
may affect phenotypic differences and the consistency 
of experimental outcomes [66]. Moreover, as com-
pared with mRNA, lncRNA has a wide range of varia-
tion and a shorter half-life [67], so it’s widely believed 
that one lncRNA can interact with multiple miRNAs 
and produce multiple transcripts, which may have 
opposite effects. Predicting and experimentally verify-
ing lncRNA-miRNA interactions involves a combina-
tion of high-throughput experimental techniques like 
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cross-linking and  immunoprecipitation  (CLIP) [68]; 
sophisticated computational models, including deep 
learning [69], network analysis [70–73], graph convolu-
tion [73], and matrix factorization [74, 75]; and experi-
mental techniques for cellular location of events or 
interactions, including subcellular fractionation assay, 
RNA fuorescence in  situ hybridization (FISH) assay, 
RNA Immunoprecipitation (RIP) PCR, luciferase assays 
and RNA pull-down assay. Most of the cited papers in 
this review varify a mechanism for lncRNA-miRNA 
interactions in the above-mentioned methods, but few 
only describe vague associations using overexpres-
sion and knockdown experiments or database predic-
tion, leaving the strength of the evidence they present 

weak (Table  1). Furthermore, as TUG1 exists in both 
the nucleus and cytoplasm, and different miRNA and 
RBP targets of TUG1 may yield different conclusions, 
highlighting cellular location of events and stoichi-
ometry of lncRNA and miRNA including cell lysate 
pull-down assays, total internal reflection fluorescence 
(TIRF)-based single-vesicle imaging assays and Argo-
naute (Ago)-based FISH can offer high specificity, sen-
sitivity, and spatial resolution [76, 77]. Unfortunately, 
there are only 6 cited papers in this review provide 
comprehensive explanations (Table1). Additionally, dif-
ferent mouse and human cell lines may affect TUG1 
expression and the significance of the cited works, for 
immortalization of cell lines can influence observed 

Table 2. Diagnostic and therapeutic implications of TUG1

Abbreviation USC-EXo urine-derived stem cells-derived exosomes, GA gallic acid, TGP total glucosides of paeony, ASO antisense oligonucleotide, KP1 Klotho-derived 
peptide 1, CRISPR Clustered Regularly Interspaced Short Palindromic Repeats, AS-IV Astragaloside IV, PDTC pyrrolidine dithiocarbamate, UA uric acid, BUN blood urea 
nitrogen, SCr serum creatinine, ERS endoplasmic reticulum stress, ANA antinuclear antibody
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phenotypes by affecting differentiation potential, and 
maintaining or altering specific cellular functions and 
markers (Table 3). Thus, more resarch is needed to con-
firm the role of TUG1 in kidney diseases and may help 
address the etiology of diseases.

In summary, the regulatory network of TUG1 varies 
greatly in most biological processes. However, TUG1 
seems to primarily mediate these processes by regulat-
ing transcription factors to affect target gene expression 
or sponging to miRNAs to inhibit target gene expres-
sion, while the upstream regulatory mechanisms of 
lncRNA TUG1 in kidney diseases are scarcely reported. 
With increasing research investment in lncRNAs, espe-
cially TUG1, the study of the TUG1 signaling pathway 
in kidney diseases may open up new ideas for many 
new therapeutic methods in the future, and TUG1 is 
expected to achieve clinical applications eventually.
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