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Abstract
Background Lithium is extensively used for mood stabilization in bipolar disorder, but its long-term use can lead to 
nephrotoxicity, characterized by a reduction in glomerular filtration rate (GFR) and potential progression to end-stage 
renal disease (ESRD). Exercise has been shown to have protective effects on renal function, yet the impact of varying 
exercise intensities on lithium-induced nephropathy is not well understood.

Aim This study aimed to investigate the effects of different intensities of endurance training on kidney function and 
inflammation in a rat model of lithium-induced nephropathy, focusing on the expression of aquaporin 2 (AQP2), 
glycogen synthase kinase 3-beta (GSK-3β), and SIRT1.

Methods Thirty-five male Wistar rats were divided into five groups: control, lithium-only, lithium with low-intensity 
exercise (LIT), lithium with medium-intensity exercise (MIT), and lithium with high-intensity exercise (HIT). The lithium-
induced nephropathy model was established by administering lithium in food. Exercise groups underwent treadmill 
training at specified intensities for eight weeks. Fractional excretion of sodium (FENa) was measured, and GFR was 
evaluated by Cr clearance. ELISA and Western blotting assessed inflammatory markers (TNF-α, IL-10), SIRT1, GSK-3β, 
and AQP2 expressions in kidney tissues.

Results Lithium significantly reduced Cr clearance and increased FENa compared to controls. All exercise intensities 
improved Cr clearance and reduced FENa, with HIT showing the most significant improvement. Exercise at all 
intensities reduced TNF-α levels and increased IL-10 levels, with MIT and HIT significantly enhancing SIRT1 levels. 
Lithium reduced the expression of GSK-3β and AQP2, whereas exercise increased their expression across all intensities.

Conclusion Endurance training, particularly at high intensity, significantly mitigates lithium-induced renal 
impairment by improving GFR, reducing inflammation, and enhancing the expression of renal protective proteins. 
These findings suggest that tailored exercise regimens could be beneficial for patients undergoing long-term lithium 
therapy to prevent renal damage.
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Introduction
Lithium is the first-line remediation for mood stabiliza-
tion in bipolar patients [1]. Due to long-term adminis-
tration, this drug has many irreversible harmful effects 
[2]. Diabetes insipidus is one of the known side effects of 
lithium consumption [3]. 15% of patients taking lithium 
experience a significant decrease in glomerular filtra-
tion rate (GFR), which is a key aspect of lithium-induced 
nephrotoxicity [3, 4]. In individuals treated with lithium, 
the decline in GFR is a gradual process, requiring more 
than 20 years to lead to end-stage renal disease (ESRD) 
[3]. The mechanism of lithium-induced nephrotoxic-
ity involves the targeting of Glycogen synthase kinase 
3-beta (GSK-3β) in the adult kidney, leading to apoptosis 
and proliferation inhibition [5]. Inflammation is another 
probable mechanism of lithium-induced nephrotoxic-
ity through increasing the serum levels of TNF-α and 
IL-1β [6, 7]. Sirtuin 1 (SIRT1), an oxidized nicotinamide 

adenine dinucleotide-dependent protein deacetylase, 
has a protective role in AKI (acute kidney injury) [8]. 
In the kidney, SIRT1 is widely expressed in tubular cells 
and podocytes. SIRT1 exerts renal protective effects by 
deacetylating and regulating transcriptional factors like 
p53 and NFκB, contributing to kidney health [9, 10].

Aquaporins are a family of water channels found in 
biological membranes. There are 13 isoforms in human 
tissues, among which aquaporin 2 (AQP2) is expressed 
in the principal cells of the collecting ducts. AQP2 is 
crucial for regulating the permeability of the collecting 
ducts and maintaining fluid balance. The relocalization 
of AQP2 toward the apical membrane to reabsorb water 
is dependent on antidiuretic hormone (ADH) [11]. Sev-
eral studies have shown that exercise can reduce mortal-
ity risk and enhance the metabolism of renal fatty acids 
[12, 13]. Aerobic exercise has demonstrated protection 
against kidney damage caused by cisplatin toxicity and 
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renal ischemia in rats by reducing inflammatory cyto-
kines and oxidative stress [14]. However, the impact of 
varying exercise intensities on preventing renal disorders 
remains uncertain. A study found that moderate exer-
cise notably reduces inflammation in mice with Lupus 
Nephritis [15], while Ishikawa’s research in 2012 indi-
cated that low-intensity exercise can slow the progression 
of early diabetic nephropathy [16]. Further exploration 
is necessary to determine the optimal exercise intensity 
and duration for enhancing kidney health. Understand-
ing the mechanistic impact of exercise on renal function 
could lead to personalized exercise recommendations for 
individuals at risk of kidney disease. This study aimed to 
examine the effects of exercise at various intensities on 
lithium-induced nephropathy, considering the unclear 
precise mechanisms of chronic lithium consumption on 
the kidney and unclear mechanisms of effects of exer-
cise on kidney diseases, which could be associated with 
exercise intensity. The investigation focused on assessing 
alterations in AQP2 and GSK3β to explore their potential 
protective effects of exercise in improving GFR. Addi-
tionally, we evaluated inflammation and SIRT1 to eluci-
date their roles as mechanisms through which exercise 
may mitigate renal injury induced by chronic lithium 
consumption, thereby providing insights into how exer-
cise intensity influences kidney health.”

Material and methods
Animals, grouping, and lithium-induced acute renal injury 
model
This study included 35 male Wistar rats weighing 200–
250 g (n = 7). Animals were purchased from the Kerman 
University of Medical Sciences animal farm and kept 
under standard conditions (23 ± 2  °C, relative humidity 
40–45%, light/dark period 12  h). The animals had free 
access to water and food during the research period. 
All experiments were approved by the ethics commit-
tee of Kerman University of Medical Sciences (Eth-
ics No: IR.KMU.AEC.1402.013). The animals were 
randomly divided into five groups: 1- Control group 
(CTL): the animals did not receive any special interven-
tion during the 8 weeks of the study and had a normal 
diet. 2- Lithium group: the animals received lithium for 
one week at 40 mmol/kg of dry food weight and then 
continued until 8 weeks at a dose of 60 mmol/kg [17]. 

3- Lithium group + low-intensity exercise (LIT): The 
animals received lithium according to the mentioned 
doses and ran on a low-intensity treadmill during the 8 
weeks. 4- Lithium group + exercise with medium inten-
sity (MIT): animals received lithium during the 8 weeks 
of the study, exercised on the treadmill with moder-
ate intensity. 5- Lithium group + high-intensity exercise 
(HIT): the animals of this group received lithium and ran 
on the treadmill with high intensity during the 8 weeks 
of the study. To prepare lithium-containing food and 
ensure its uniform distribution in the food, the required 
amount of lithium was added to the water according to 
the mentioned dose. Then, the animal food was turned 
into a paste by mixing it with water containing lithium; 
then, it was turned into dry pellets. The duration of exer-
cise was 8 weeks. One day after the last exercise session, 
the animals were placed in metabolic cages individually 
for 24 h to collect urine samples. Then, the animals were 
euthanized with a high dose of ketamine (100 mg/kg) and 
xylazine (80 mg/kg), and their blood and kidney samples 
were collected.

Exercise protocol
In the familiarization phase, the rats were trained on 
the treadmill at 15  m/min for 15  min for two weeks. 
The Vmax was measured to calculate the maximal oxy-
gen consumption (VO2max). At first, rats performed an 
incremental test for obtaining the Vmax (sedentary male 
rats; y = 29.3x + 2.1; y = VO2max, x = Vmax-m/s). The 
incremental test was initiated with a 10 m/min warm-up 
that gradually increased (3 m/min) until exhaustion [18]. 
After the incremental test, the lactate levels were mea-
sured using a lactometer (Lactate Scout Company/Code: 
37, Germany), and values above 6 mmol/L were consid-
ered high-intensity [19]. Then, VO2 max was calculated. 
Three types of treadmill exercise training protocols were 
designed for three different groups of animals based on 
the Vmax: low intensity (LIT: 35–45% of Vmax), moder-
ate intensity (MIT: 65–70% of Vmax), and high intensity 
(HIT: above 80% of Vmax). Increasing load with increas-
ing speed and checking every two weeks of Vmax were 
done. The training course was performed for 8 weeks, 5 
days a week, for about 30 min with the same distance in 
all training groups per session (Table 1) [20]. To apply the 
stress caused by the device, the control group and lithium 

Table 1 Exercise training protocol
Weeks 1,2 3 4 5 6 7 8
HIT Time (minute) 15 14 13 13 13 13 13
HIT Speed (m/min) 18 22 25 28 31 32 33
MIT Time (minute) 19 18 17 17 17 18 18
MIT Speed (m/min) 14 17 19 21 23 23 24
LIT Time (minute) 30 28 27 26 25 26 27
LIT Speed (m/min) 9 11 12 14 16 16 16
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users were placed on the treadmill without doing exercise 
[21].

Sampling
To collect urine and calculate GFR, the animals were 
placed individually in a metabolic cage for 24 h after the 
last exercise session (to prevent the acute effect of exer-
cise). At the end of the research, the animals were sacri-
ficed with an intraperitoneal injection of a lethal dose of 
Ketamine (100 mg/kg) and Xylazine (80 mg/kg), and the 
left kidney was immediately frozen in liquid nitrogen and 
stored in a -80 °C freezer for measuring biochemical indi-
ces and molecular studies.

Glomerular filtration rate (GFR) and Fractional excretion 
sodium (FENa) calculation
The glomerular filtration rate was calculated via creati-
nine (Cr) clearance using the following formula:

 
GFR = UCr × V◦

PCr

UCr: urinary creatinine concentration (mg/dl), PCr: 
plasma creatinine concentration (mg/dl), and V°: urine 
volume (µl/min). Cr clearance presented as microliters/
minute/mg kidney weight (µl/min/mgKW) [22].

Also, the FENa was calculated based on the following 
formula: (PNa: Plasma sodium concentration, UNa: Urine 
Sodium concentration, PCr: plasma creatinine concen-
tration, UCr: urine creatinine concentration) [23].

 
FENa% = UNa × PCr

PNa × UCr

Biochemical evaluations
To measure the amounts of TNF-α (DuoSet Co, Cat No: 
DY510-05), IL-10 (DuoSet Co, Cat No: DY522-05), and 
SIRT1 (CUSABIO Co, Cat No:CSB-EL021339RA) in the 
kidney tissue, 100  mg of frozen tissue was used, it was 
taken out of the freezing state at room temperature and 
cooled with phosphate buffer solution. Homogenized 
on ice, then centrifuged for 20  min at 13,000  rpm, and 
the supernatant was measured using the corresponding 
ELISA kits [24].The urine and serum levels of creatinine 
were measured by standard kits (Pars Azmoon, Teh-
ran, Iran) using an autoanalyzer (Selectra-XL, Vital Sci-
ence, Netherlands). The urine and serum sodium levels 
was measured by flame photometry (Corning, Halstead, 
Essex, UK).

Western blotting
The renal tissue was homogenized in ice-cold lysis 
buffer and incubated for 30  min. The samples were 
centrifuged at 12,000 x g, 4  °C for 10  min, and their 

protein concentration was determined using the Brad-
ford method. Proteins were separated by size using 
SDS-PAGE and then transferred onto a polyvinylidene 
fluoride (PVDF) membrane. The PVDF membrane was 
incubated in the blocker solution overnight at 4  °C. In 
the next step, the PVDF membranes were incubated with 
related antibodies (GSK3β (Santa Cruze, sc-81462) and 
AQP2 (Santa Cruz, sc-515770) for 3 h at room tempera-
ture. After being washed three times with Tris-buffered 
saline with 0.1% Tween 20 (TBST) (5  min each time), 
the PVDF membrane was incubated with horseradish 
peroxidase (HRP)-conjugated goat anti-mouse IgG (SC-
516102) for 1 h at room temperature. After washing with 
TBST, enhanced chemiluminescence (Thermo Fisher Sci-
entific, Inc.) was used to observe the protein bands in a 
dark room. Beta actin (sc-47778) was used as housekeep-
ing control, and the protein band density was quantified 
using Image J software.

Statistical analysis
Prism version 8 software was used for statistical analyses. 
The normality of the data was checked with the Shapiro-
Wilk test. One-way analysis of variance and Tukey’s post 
hoc test were used to compare the groups in normally 
distributed data, and Kruskal Wallis followed by Mann 
Whitney post hoc test for non-normal distributed data. 
The data are expressed as mean ± SEM and the difference 
is considered significant at P < 0.05.

Results
The effects of exercise on serum lithium, and body weight 
following renal injury
Serum lithium was measured to confirm the effect of 
chronic lithium intake. Our findings revealed that 8 
weeks of lithium consumption increased serum lithium 
compared to the control group. All intensities of training 
reduced serum lithium compared to the lithium group 
significantly (P < 0.05) (Fig.  1 A). All groups had no sig-
nificant difference in body weight (Fig. 1 B).

The effects of exercise on serum creatinine,urine 
creatinine, GFR, and FENa% following renal injury
Our findings revealed that lithium increased serum Cr 
while reducing urinary Cr (P < 0.001, P < 0.05, respec-
tively). HIT training reduced serum Cr and MIT training 
increased urinary Cr compared to the lithium group sig-
nificantly (P < 0.05) (Fig. 2A and B). Also, lithium reduced 
Cr clearance and increased FENa% compared to healthy 
animals. However, high-intensity training could increase 
Cr clearance compared to the lithium group (P < 0.01); all 
intensities of training could reduce FENa% (Fig. 2C and 
D).



Page 5 of 11Saberi et al. BMC Nephrology           (2025) 26:60 

The impacts of exercise on inflammation following renal 
injury
Our results showed that lithium increased the level of 
TNF-α in the kidney tissue compared to the healthy rats 
(P < 0.001). At the same time, all intensities of exercise 
training diminished the level of TNF-α compared to the 

lithium group (P < 0.01 for LIT & P < 0.05 for HIT). On 
the other hand, based on our findings, the level of IL10 
was reduced following lithium consumption in the kid-
ney tissue compared to the healthy animals (P < 0.05). 
All exercise intensities increased this anti-inflammatory 

Fig. 2 The effects of different training intensities on serum Cr (A), urinary Cr (B), GFR (C), FENa (%) (D) and urine volume (E) (n = 7). LIT: Low-intensity train-
ing, MIT: Medium intensity training and HIT: High-intensity training. Data is presented as Mean ± SEM.* P < 0.05 vs. CTL# P < 0.05 vs. Lithium. A one-way 
ANOVA test was used for data analysis

 

Fig. 1 The effects of different training intensities on serum lithium (A) and body weight (B) (n = 7). LIT: Low-intensity training, MIT: Medium intensity train-
ing and HIT: High-intensity training. Data is presented as Mean ± SEM.* P < 0.05 & ** P < 0.01 & *** P < 0.001 vs. CTL# P < 0.05, ## P < 0.01 & ### P < 0.001 vs. 
Lithium. One-way ANOVA test was used for data analysis
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cytokine (P < 0.01 for MIT & P < 0.05 for HIT) (Fig.  3 
A&B).

The effects of exercise on SIRT1 level following renal injury
Our findings disclosed that lithium consumption sig-
nificantly diminished the SIRT1 level in the kidney tissue 
(P < 0.05). However, MIT and HIT increased SIRT1 levels 
(P < 0.05) (Fig. 4).

The impacts of exercise on GSK3β expression following 
renal injury
Our observations disclosed that lithium consumption 
diminished the expression of GSK3β compared to the 
control group (P < 0.01), while all intensities of exercise 
increased this expression (P < 0.01) (Fig. 5).

The effects of exercise on AQP2 expression following renal 
injury
Our results disclosed that lithium consumption dimin-
ished the expression of AQP2 compared to the control 
group (P < 0.05). At the same time, all intensities of exer-
cise increased this expression (P < 0.01 for low intensity & 
P < 0.05 for medium and high intensities) (Fig. 6).

Discussion
Many studies have indicated that the intensity of exer-
cise [25], the timing of exercise initiation [26], and the 
Protocol of exercise [27] can either diminish or improve 

Fig. 5 The effects of different training intensities on the relative density 
of GSK3β protein expression (normalized to the β-Actin) (n = 4). LIT: Low-
intensity training, MIT: Medium intensity training, and HIT: High-intensity 
training. Data are presented as Mean ± SEM.* P < 0.05 vs. CTL. ## P < 0.01 vs. 
Lithium. A one-way ANOVA test was used for data analysis

 

Fig. 4 The effects of different training intensities on SIRT1 levels (n = 4). 
LIT: Low-intensity training, MIT: Medium intensity training and HIT: High-
intensity training. Data are presented as Mean ± SEM.* P < 0.05 vs. CTL. # 
P < 0.05 vs. Lithium. A one-way ANOVA test was used for data analysis

 

Fig. 3 The effects of different training intensities on inflammatory cytokines (n = 4). LIT: Low-intensity training, MIT: Medium intensity training, and HIT: 
High-intensity training. Data are presented as Mean ± SEM.* P < 0.05 & *** P < 0.001 vs. CTL. # P < 0.05 & ## P < 0.01 vs. Lithium. A one-way ANOVA test was 
used for data analysis
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the effectiveness of exercise [28]. Additionally, previous 
studies have reported the impact of lithium on kidney 
function [29, 30]. In this study, we conducted a novel 
investigation to compare the impacts of various intensi-
ties of endurance exercise on lithium-induced nephropa-
thy. We also evaluated the potential effects of exercise on 
the expression of AQP2 and GSK3β proteins and inflam-
mation in kidney tissue.

Our study found that treatment with lithium for eight 
weeks led to increase in serum lithium (SLi) levels, poly-
uria, natriuresis, and kidney damage. This was accompa-
nied by heightened inflammation and decreased SIRT1, 
GSK3β, and AQP2 expression levels. However, endur-
ance exercise at all intensities (high, moderate, and low) 
significantly improved the renal impairments caused 
by lithium and aided in kidney damage recovery. HIT 
showed the most significant improvement.

Our results also indicated that lithium reduced Cr 
clearance and increased serum Cr levels, while all exer-
cise intensities restored them, with high-intensity exer-
cise appearing to be the most effective. In line with our 
results, Leite et al. found that high-intensity exercise 
was more effective than continuous exercise in reduc-
ing inflammation markers in female rats with cisplatin 
nephrotoxicity [31]. Similarly, Tucker (2012) discovered 
that high-intensity interval training (HIIT) was more 
effective than low-intensity exercise at increasing the 
expression of SOD1 and catalase enzymes in a model of 
chronic kidney disease (CKD) caused by nephrectomy 
and ischemia-reperfusion [32]. In contrast, a 2018 study 
by Espada revealed that high-intensity resistance train-
ing (HIIRT) led to early muscle and kidney damage, with 
significant increases in creatine kinase, myoglobin, SCr, 

microalbuminuria, and urinary markers of renal tubular 
damage [33]. On the other hand, a study by Ishikawa in 
2012 revealed that moderate and low-intensity exercise 
improved kidney function in diabetic rats [16]. Serum Cr 
concentration is affected by.

muscle mass and physical activity; therefore, it is rec-
ommended to assess kidney function using serum cys-
tatin C (SCys-C) in individuals engaged in exercise. In 
contrast, several studies have indicated that these two 
biomarkers are altered in parallel during exercise train-
ing. A study involving young, healthy adults indicated 
that two exercise protocols (endurance and speed train-
ing) had similar effects on SCr and SCys-C levels in both 
the acute and chronic phases [34]. Moreover, three inten-
sities of exercise training in healthy elderly individuals 
(some of whom had renal dysfunction, estimated GFR, 
[eGFR] < 60 mL/min/1.73 m2) did not change SCr or 
Scyc-C levels, confirming that acute mild to severe exer-
cise training did not show harmful effects on renal func-
tion [35]. Another study revealed that GFR estimated 
based on Cr and Cys-C in CKD patients assessed the 
renal function similarly at baseline and after 12 months 
of exercise training [36]. Although exercise is supposed 
to increase serum Cr, the creatinine lowering effect of 
exercise remains in these experiments.

In our study, lithium increased FENa and urine volume 
while reducing the expression of AQP2, GSK3β proteins, 
and Cr clearance. However, at all three exercise intensi-
ties, these parameters improved by lowering serum lith-
ium levels, FENa and urine volume and increasing the 
expression of AQP2, GSK3β proteins, and Cr clearance, 
with no significant difference observed between the exer-
cise intensities. The increase in FENa can be explained by 
greater sodium excretion due to the competitive effect 
of lithium on reabsorption through ENaC in the distal 
tubules and a reduction in Cr clearance; both factors con-
tribute to the elevation of FENa. Previous studies have 
explained the involvement of down-regulation of AQP2 
and AQP3 in lithium-induced diabetes insipidus, while 
sodium transporters were not implicated [17].Similar 
protective results of exercise training have been observed 
in other studies. Almeida et al. (2022) investigated how 
eight weeks of swimming exercise could protect the kid-
neys of cisplatin-injured mice. They found no significant 
difference in Nrf2 gene expression at the three exercise 
intensities [37]. Also, Sari et al. (2024) examined how dif-
ferent levels of exercise affected body weight, body mass 
index, and kidney damage in mice given fructose. They 
found that SCr levels were reduced by moderate-inten-
sity training (MIT) but not low- or high-intensity train-
ing (LIT, HIT). The authors explained that this difference 
was related to LIT, which was not adequate in preventing 
fat accumulation or metabolism impairment in the kid-
neys. At the same time, HIE induced too much distress 

Fig. 6 The effects of different training intensities on the relative density 
of AQP2 protein expression (normalized to the β-Actin) (n = 4). LIT: Low-
intensity training, MIT: Medium intensity training, and HIT: High-intensity 
training. Data are presented as Mean ± SEM.* P < 0.05 vs. CTL. # P < 0.05 & 
## P < 0.01 vs. Lithium. A one-way ANOVA test was used for data analysis
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in the animals, preventing renal protection. In spite of 
renal function improvement, none of the exercise inten-
sities significantly improved the glomerulosclerosis score 
or interstitial fibrosis [28]. In contrast to Sari et al., HIT 
improved renal function significantly by reducing SCr 
and Cr clearance in our study. This discrepancy may stem 
from variations in exercise type and animal species. Fruc-
tose-received mice experienced swimming against a 9% 
body weight load, which might be stressful for animals, 
while the rats in our study ran on a treadmill that is less 
stressful and not life-threatening. Our findings indicated 
that endurance exercise in all intensities had protective 
effects against kidney injury induced by chronic lith-
ium consumption. Based on our observations, the pos-
sible mechanisms of this renoprotection may involve an 
increasing SIRT1, an anti-inflammatory cytokine, IL-10 
(primarily in MIT and HIT), and a reduction in the pro-
inflammatory TNF-α (mostly in LIT and HIT). However, 
further pharmacological or genetic inhibitory experi-
ments are needed to confirm these results. Additionally, 
renal function biomarkers such as SCr and Cr clearance 
improved with HIT. These differences can be explained 
by complicated factors that regulate renal function, 
including autonomic nervous system (ANS), hemody-
namic condition, autacoids secreted from renal tissue, 
and renin-angiotensin system (RAS). Literature shows 
that different exercise regimen activates RAS differently; 
for instance, moderate-intensity continuous exercise 
(MICE) reduced serum levels of angiotensin-converting 
enzyme (ACE), while high-intensity interval exercise 
(HIIE) increased serum levels of angiotensin-converting 
enzyme 2 (ACE2). Neither of these two exercise proto-
cols influenced serum levels of angiotensin (Ang) II or 
Ang 1–7, but urinary Ang 1–7 increased by both [38]. 
Considering the activation of the protective non-classic 
arm of RAS by MICE and HIIE, these exercises, espe-
cially MICE, are suggested for hypertensive individuals 
to help control blood pressure. In line with this research, 
our previous study indicated the cardioprotective effect 
of MIT compared to LIT or HIT in lithium-treated rats 
[21]. Moreover, besides activating the RAS, the type 
and intensity of exercise also affected ANS stimulation. 
A study found that moderate to high-intensity exercise 
enhances cardiac control by the ANS [39]. Addition-
ally, an article [40] reviews the effects of different types 
of exercise on renal diseases. The study suggests that 
long-term moderate-intensity exercise protocols benefit 
patients undergoing hemodialysis or renal transplanta-
tion. In our study, while different exercise intensities 
effectively reduced inflammatory markers, renal function 
improved with HIT.

Despite lithium being the most effective remedia-
tion for bipolar disorder, its long-term prescription is 
accompanied by caution because of side effects, including 

nephrotoxicity characterized by reduced GFR, polyuria, 
and natriuresis [29]. One of the mechanisms of lithium-
induced kidney damage is inflammation [41]. Our results 
showed that lithium could increase inflammation by 
increasing TNF-α and reducing IL10. In agreement with 
our results, it has been shown that lithium increases kid-
ney inflammation via ROS/NF-κB/NLRP3 pathway acti-
vation [30]. Additionally, Erbas et al. demonstrated that 
lithium increases TNF-α in mouse kidneys [42]. Vian 
has reported the anti-inflammatory effects of exercise in 
chronic kidney disease [43], and in numerous other stud-
ies involving various tissues, including the kidneys, heart, 
and lungs [44–46]. Potential mechanisms for the anti-
inflammatory effects of exercise include reducing visceral 
fat mass (by decreasing adipokine release), macrophage 
infiltration into fat tissue, circulating pro-inflammatory 
monocytes, toll-like receptor expression, increasing cor-
tisol, adrenaline, fetuin-A levels [28, 47], and regulatory 
T cells in circulation [44, 45, 48].

Our results also showed that SIRT1 levels decreased 
following lithium-induced kidney injury. Other studies 
have also demonstrated reduced SIRT1 levels in vari-
ous animal models of kidney injury [49–51]. Exercise 
increased SIRT1 expression in the kidney tissue of exper-
imental diabetic animals [52]. SIRT1 is the most studied 
isoform of the sirtuin family in the kidney and is widely 
expressed in tubular cells and podocytes [53]. By regulat-
ing various transcription factors for deacetylation, reduc-
ing interstitial fibrosis, inhibiting podocyte and tubular 
cell apoptosis, suppressing inflammation, improving 
mitochondrial function, and regulating blood pres-
sure, SIRT1 provides renal protective effects [54].Thus, 
decreased SIRT1 associated with lithium may contrib-
ute to the initiation and progression of kidney diseases, 
whereas increased SIRT1 levels after exercise may miti-
gate kidney damage.

In our study, although all three intensities (high, mod-
erate, and low) increased the anti-inflammatory cyto-
kines IL-10 and SIRT1, moderate and high-intensity 
exercise groups were significantly effective. These find-
ings are consistent with previous studies on the anti-
inflammatory effects of exercise in various diseases. In 
Leite et al., three different intensities of aerobic exercise 
were examined in AKI-induced mice with cisplatin, and 
high-intensity exercise (HIIT) was more effective than 
moderate-intensity continuous exercise in reducing 
kidney TNF-α, IL-1β, IL-6, MCP-1 levels, and macro-
phage infiltration [31]. Juszczak et al. also demonstrated 
that moderate-intensity exercise could reduce TNFα, 
IL-1β, IL-6, and MCP-1 levels in chronic kidney disease 
induced by obesity in high-fat diet-fed mice by activating 
the AMPK pathway [55]. Sossdorf et al. (2013) reported 
that both high- and low-intensity running for six weeks 
could reduce urea and creatinine levels, improve kidney 
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function, and decrease inflammatory markers such as 
IL-6 and IL-10 in sepsis-induced AKI models [56]. How-
ever, Ishikawa et al. (2012) found moderate and low-
intensity exercise improved renal function in diabetic 
KK-Ay mice. Both intensities reduced urinary albumin 
excretion and podocyte numbers, but moderate exercise 
increased HIF-1α expression, potentially exacerbating 
renal ischemia. Low-intensity exercise attenuated early 
diabetic nephropathy progression [16].

The urinary concentration mechanism mediated by 
ADH is disrupted by lithium treatment [57]. Several 
mechanisms have been proposed to explain the molec-
ular basis of this effect. Typically, ADH binding to the 
V2 receptor in collecting duct epithelial cells activates 
adenylyl cyclase, increases cAMP levels, and stimulates 
AQP2 expression and localization on the luminal mem-
brane to increase water permeability. Lithium enters the 
collecting duct epithelial cells via epithelial sodium chan-
nels (ENaC), inhibits adenylyl cyclase, reduces cAMP 
production, and decreases AQP2 expression [58]. More-
over, GSK3β, which mediates ADH function in collecting 
duct cells, is inhibited by lithium treatment [59].

The inhibition of GSK3β mediated by lithium occurs 
through direct and indirect mechanisms. The direct 
inhibitory mechanism involves lithium binding ambigu-
ously to the GSK3β molecule, leading to its inhibition. 
In contrast, the indirect mechanism entails phosphory-
lation of a specific site (Serine-9) on the N-terminal 
of the GSK3β molecule [59]. It has been reported that 
GSK3β can regulate adenylate cyclase activity, expres-
sion, and trafficking of AQP2. Additionally, inhibition 
of GSK3β has been shown to regulate cyclooxygenase 2 
(COX-2) and increase prostaglandin E2 (PGE2) produc-
tion. COX-2 and PGE2 have been implicated in inhibiting 
water reabsorption by counteracting ADH function [60].

Moreover, the role of inflammation in altering AQPs 
expression has been reported in renal diseases. In UUO 
mice treated with renin inhibitors, AQP2 expression 
improved by suppressing inflammasomes and activating 
IL-1β [61]. Another study demonstrated increased AQP2 
expression by alleviating diet-induced inflammation in 
kidney tissue [62]. Natriuresis is another sign of lithium 
toxicity. In lithium-induced NDI rats, expression of α, 
β, and γ ENaC subunits decreased [63, 64], which could 
explain the sodium wasting observed in our results. Con-
sistent with previous studies, our findings demonstrated 
that lithium intake led to inflammation with increased 
TNF-α, decreased IL-10, and SIRT1, subsequently 
reducing GSK3β and AQP2 expression in kidney tissue. 
Meanwhile, different intensities of endurance training 
increased the expression of these proteins and facilitated 
Na+ excretion while reducing renal inflammation. Thus, 
exercise may reverse the renal adverse effects of lithium.

It’s essential to find non-pharmacological methods 
to prevent kidney damage caused by lithium. Our study 
not only explained how lithium can be toxic to the kid-
neys but also examined how exercise can help reduce its 
negative effects. However, it’s recommended that future 
studies compare different exercise plans and durations in 
lithium-induced nephropathy models.

The severity of lithium-induced nephropathy is time-
dependent. It was initiated by urine concentration 
impairment after several weeks of lithium therapy and 
progressed to chronic kidney disease and ESRD after 
10–20 years [1]. Since bipolar disorder usually begins 
between the ages of 15 and 24, the duration of lithium 
administration might be more than 30 years, so the 
development of chronic kidney disease is prevalent in 
bipolar patients. Although there are some medical treat-
ments, such as amiloride, to reduce lithium nephrotoxic-
ity, finding non-medical treatment to prevent renal injury 
is valuable.

A sedentary lifestyle is common in bipolar patients 
[65]. Physical activity was associated with better func-
tioning, quality of life, and reduced depressive symptoms. 
Moreover, it has been shown that bipolar patients suf-
fer from balance disorders and skeletomuscular impair-
ment in old ages [66, 67]. Therefore, the importance of 
suggesting suitable exercise training for bipolar patients 
with possible comorbidity is evident. Our result revealed 
the beneficial effects of exercise in different intensities, so 
endurance exercise training could be considered a non-
medical or alternative care option in patients treated 
with lithium following their physical and neuromuscular 
abilities.

Conclusion
Our findings disclosed that endurance training at low, 
medium, and high intensities, particularly high-intensity 
exercise, significantly enhances kidney function. This 
results in increased GFR, reduced polyuria, decreased 
sodium excretion, and lower serum Cr levels. The poten-
tial mechanisms behind the improvement in GFR and 
renal injury involve heightened expression of GSK3β and 
AQP2, elevated levels of SIRT1, and decreased inflamma-
tion (Fig. 6).

We recommend further exploration of the long-term 
adverse effects of lithium treatment on the kidneys. This 
investigation should consider age, gender, disease dura-
tion, and lithium usage. Endurance training with different 
intensities is suggested to eliminate renal adverse effects 
of long-term lithium therapy in considering the patients’ 
age and neuromuscular condition.
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Limitations
A limitation of this study was the lack of histological 
examination of kidney tissue. On the other hand, future 
studies should use genetic and pharmacological inhibi-
tors to investigate the pathways involved further.
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