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Abstract 

Background This meta-analysis aims to investigate the impact of abnormalities in mineral metabolic markers, 
including serum phosphate and calcium, intact parathyroid hormone (iPTH), and fibroblast growth factor 23 (FGF23) 
on the risk of fractures in patients with chronic kidney disease (CKD).

Methods A systematic search was conducted across MEDLINE, Web of Science, EMBASE, ClinicalTrials.gov, 
and the Cochrane Central Register for Controlled Trials. The outcomes were association of mineral metabolic markers 
with the risk of fractures in patients with chronic kidney disease. Pooled risk estimates and 95% confidence intervals 
(CIs) were calculated using fixed-effects or random-effects models.

Results Thirty-two studies were included in the meta-analysis. High and low levels of serum phosphate in hemo-
dialysis (HD) patients were both associated with an increased risk of fractures (RR = 1.08, 95% CI 1.02–1.15, P = 0.013; 
RR = 1.13, 95% CI 1.02–1.25, P = 0.022, respectively). Similarly, abnormal levels of iPTH in CKD patients, both high 
and low, were associated with increased fracture risk (RR = 1.25, 95% CI 1.20–1.31, P < 0.001; RR = 1.41, 95% CI 1.10–1.82, 
P = 0.007, respectively). Elevated FGF23 levels were also linked to an increased risk of fractures (RR = 1.32, 95% CI 
1.06–1.66, P = 0.015). While a higher level of calcium exhibited a trend towards reduced fracture incidence without sta-
tistical significance (RR = 0.90, 95% CI 0.77–1.05, P = 0.181), lower calcium levels tended to increase fracture risk with-
out statistical significance (RR = 1.11, 95% CI 0.99–1.24, P = 0.087). Notably, subjects treated with calcium and phospho-
rus modulating drugs demonstrated a statistically significant reduction in fractures among CKD patients undergoing 
dialysis (phosphate binders, RR = 0.79, 95% CI 0.70–0.89; cinacalcet, RR = 0.74, 95% CI 0.59–0.93; vitamin D analogues, 
RR = 0.82, 95% CI 0.74–0.92, respectively).

Conclusion This meta-analysis underscores the association between abnormal mineral metabolic markers, includ-
ing high serum phosphate, iPTH, and FGF23, and an increased risk of fractures in CKD patients. Notably, both elevated 
and decreased levels of phosphate and iPTH contribute to fracture risk. The efficacy of active vitamin D, phosphorus 
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binders, and cinacalcet in preventing fractures was observed in HD patients but not in the non-dialysis CKD 
population.

Trial registration PROSPERO CRD42023493951.

Keywords Inorganic phosphate (Pi), Intact parathyroid hormone (iPTH), Fibroblast growth factor 23 (FGF23), Fracture, 
Chronic kidney disease (CKD)

Introduction
Chronic kidney disease (CKD) stands as a prominent 
health concern, frequently precipitating heightened car-
diovascular and cerebrovascular complications [1]. Early 
in the trajectory of CKD, disruptions in mineral metabo-
lism emerge, exerting a pivotal influence on the accelera-
tion of metabolic irregularities [2]. Clinical investigations 
have underscored a discernible association between bone 
and mineral metabolism aberrations and an augmented 
susceptibility to fractures [3]. The Dialysis Outcomes 
and Practice Patterns Study (DOPPS) II, encompass-
ing 12 participating countries, reported an incidence of 
8.9 per 1000 patient years for new hip fractures and 25.6 
per 1000 for any new fracture among hemodialysis (HD) 
patients [4].

The primary culprits implicated in elevated fracture 
risk in CKD include bone loss, secondary hyperpar-
athyroidism (SHPT), deficiency in 1,25-dihydroxydroxy 
vitamin D, chronic acidosis, and heparin exposure [5]. 
Numerous clinical studies and reviews have proposed 
that CKD-mineral and bone disorder (CKD-MBD), 
marked by conditions such as hyperphosphatemia, com-
promised activation of vitamin D, SHPT, and elevated 
fibroblast growth factor 23 (FGF23), significantly contrib-
ute to the heightened fracture risk [4, 6–8]. Nevertheless, 
the precise fracture risk in CKD and its correlation with 
surrogate markers of CKD-MBD remain elusive. Incon-
sistencies in findings regarding the association between 
mineral bone metabolic markers and fracture risk in the 
CKD population have been documented [4, 9–12].

Thus, the primary objective of this meta-analysis is to 
affirm the relationship between mineral bone metabolic 
markers and the risk of fractures in CKD patients. Fur-
thermore, our investigation seeks to elucidate the poten-
tial efficacy of phosphorus binders, active vitamin D, and 
the calcium-sensing receptor agonist-cinacalcet in miti-
gating fracture risk within both dialysis and non-dialysis 
CKD populations.

Methods
We adhered to a standardized protocol in accord-
ance with the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) statement. This 
study is prospectively registered with PROSPERO under 

the registration number CRD42023493951, ensuring 
transparency and methodological rigor in our research 
process.

Search strategy and study selection
We implemented a comprehensive search strategy to 
identify relevant literature from multiple databases, 
including MEDLINE (PubMed, January 1, 1966, to Janu-
ary 31, 2024), Web of Science, EMBASE (January 1, 1966, 
to January 31, 2024), ClinicalTrials.gov, and the Cochrane 
Central Register of Controlled Trials. The search utilized 
specific keywords such as “serum phosphate,” “parathy-
roid hormone,” “fibroblast growth factor 23,” “calcium,” 
“phosphate binders,” “cinacalcet,” “vitamin D analogues,” 
in conjunction with “chronic kidney disease” and “frac-
ture.” Detailed search strategies for each database are 
outlined in Table S1. Additionally, manual searches of ref-
erences cited in identified original studies and pertinent 
review articles were conducted and assessed for inclu-
sion. The stepwise procedures are elucidated in Figure S1.

Inclusion and exclusion criteria
Studies that met the following criteria were included 
in our meta-analysis: 1) Studies involving patients 
with CKD. 2) Inclusion of randomized controlled tri-
als (RCTs), non-randomized trials, and prospective or 
observational studies. 3) Evaluation of fractures associ-
ated with high or low levels of serum phosphate, para-
thyroid hormone, fibroblast growth factor 23 (FGF23), 
or calcium, as compared to a control group with normal 
levels of these parameters in CKD patients. 4) Assess-
ment of fractures related to the use of phosphate binders, 
cinacalcet, or vitamin D analogues, in comparison with a 
control group receiving placebo or no treatment in CKD 
patients.

Studies were excluded if they met any of the follow-
ing criteria: 1) Studies where the outcomes of fractures 
were not reported. 2) Different publications analyzing the 
same population or duplicates. 3) Studies involving pop-
ulation post-kidney transplantation.

Data collection
Three researchers (Y Liu, ZX Zhang, CS Fu) performed 
the search and reviewed the results. Data were inde-
pendently extracted by the three researchers Y Liu, ZX 
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Zhang, CS Fu) who reviewed all the study characteris-
tics (i.e., first author’s surname, year of publication, study 
design, sample, follow-up, and outcomes). Any disagree-
ment in data extraction was resolved through a discus-
sion among these researchers in consultation with the 
other authors (XH Yang, HM Jin and ZB Ye).

Assessment of heterogeneity
Heterogeneity assessment employed Cochran’s Q and 
 I2 statistics. A study was deemed heterogeneous if the 
P-value was less than 0.1 (Cochran’s Q). Studies with  I2 
values below 50% were categorized as non-heterogene-
ous, warranting the use of a fixed-effects model in their 
analysis. Conversely, studies with  I2 values exceeding 50% 
were considered heterogeneous and were subjected to 
analysis using a random-effects model.

Risk of bias assessment
The assessment of the quality of included non-rand-
omized controlled trials (non-RCTs) was conducted 
using the ‘Risk of Bias in Non-randomized Studies of 
Interventions’ (ROBINS-I) tool. The studies were evalu-
ated for the risk of bias in seven domains and subse-
quently ranked as low, moderate, serious, or critical risk 
of bias.

Statistical analyses
Data analysis was performed utilizing STATA version 
17.0 (StataCorp, TX, USA). Risk ratios (RRs) for fractures 
were computed, and all pooled estimates are presented 
with corresponding 95% confidence intervals (CIs). Addi-
tionally, a sensitivity analysis was conducted, involving 
the extraction of each study to assess its impact on the 
overall estimate. To investigate the presence of publi-
cation bias, Egger’s test was employed. A significance 
threshold of P < 0.05 was set for all statistical analyses.

Results
Study flow and study characteristics
The selection process for inclusion is delineated in Fig-
ure S1 and Table S1. A comprehensive screening process 
identified 196 potentially relevant citations, which were 
subsequently evaluated, leading to the retrieval of 32 arti-
cles for in-depth examination [4, 9–39]. The pertinent 
characteristics of the 32 included studies are summarized 
in Table 1. The meticulous risk assessment of these stud-
ies utilizing the ROBINS-I tool is presented in detail in 
Table S2.

Effect of serum inorganic phosphate (Pi) on fracture 
endpoints
Normal phosphate levels are defined as ranging from 1.13 
to 1.78 mmol/L. Phosphate levels above 1.78 mmol/L are 

considered high, while levels below 1.13 mmol/L are clas-
sified as low. These thresholds are based on the Kidney 
Disease Outcomes Quality Initiative (K/DOQI) guide-
lines. The pooled results from nine studies involving 
CKD patients revealed that high Pi levels posed a height-
ened risk of fractures compared to the intermediate 
range (Fig.  1A, RR = 1.08, 95% CI 1.02–1.15, P = 0.013). 
Similarly, results pooled from five studies involving CKD 
patients undergoing hemodialysis demonstrated that a 
low level of Pi increased the risk of fractures when com-
pared to the intermediate range (Fig. 1B, RR = 1.13, 95% 
CI 1.02–1.25, P = 0.022).

Effect of iPTH levels on fracture endpoints
The thresholds for high and low PTH levels were cho-
sen based on clinical guidelines (K/DOQI). For dialy-
sis patients, maintaining iPTH levels between 150 and 
300  pg/mL is the recommended target range. In our 
meta-analysis, we defined high PTH as greater than 
300  pg/mL and low PTH as below 150  pg/mL. In con-
trast to the intermediate iPTH levels, a comprehensive 
analysis of pooled results from 11 studies revealed that 
elevated iPTH levels significantly increased the risk of 
fractures in patients with dialysis (Fig. 2A, RR = 1.25, 95% 
CI 1.20–1.31, P < 0.001).

Additionally, findings from 10 studies indicated that 
lower iPTH levels were associated with an elevated risk 
of fractures in dialysis patients (Fig. 2B, RR = 1.41, 95% CI 
1.10–1.82, P = 0.007,  I2 = 71.5). Considering the notable 
heterogeneity, we categorized the studies by study type, 
which substantially reduced the heterogeneity (Figure S2, 
cohort study,  I2 = 47.1%; retrospective study,  I2 = 0.0%).

Effect of FGF23 levels on fracture endpoints in CKD 
patients without dialysis
No pertinent literature was found to explore the impact 
of FGF23 on fracture endpoints in CKD patients under-
going dialysis. Consequently, our focus was directed 
towards CKD patients without dialysis. This meta-
analysis was conducted on six study arms that reported 
fracture endpoints. The pooled results revealed that ele-
vated FGF23 levels (> 58 pg/ml) were associated with an 
increased risk of fracture outcomes (RR = 1.32, 95% CI 
1.06–1.66, P = 0.015, Fig. 3).

Effect of serum corrected calcium on fracture endpoints 
in CKD patients on dialysis
In our meta-analysis, we explored the impact of 
serum calcium on fracture endpoints in CKD patients 
undergoing dialysis. The K/DOQI guidelines recom-
mend that the target range for serum calcium is 2.1–
2.51 mmol/L. Low calcium was defined as levels below 
2.1  mmol/L, intermediate calcium as levels between 
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2.1 and 2.51 mmol/L, and high calcium as levels above 
2.51 mmol/L. When compared to the intermediate cal-
cium levels, a higher calcium level appeared to confer 
a potential benefit in reducing the incidence of frac-
tures, although this trend lacked statistical significance 
(RR = 0.90, 95% CI 0.77–1.05, P = 0.181; Fig. 4A). Con-
versely, lower calcium levels exhibited a tendency to 
increase the risk of fractures, though again without 
statistical significance (RR = 1.11, 95% CI 0.99–1.24, 
P = 0.087; Fig. 4B).

Effect of phosphate binders, cinacalcet, and vitamin D 
analogues on fracture endpoints in CKD patients
As depicted in Fig. 5A, individuals treated with medi-
cations addressing abnormal calcium and phosphorus 
metabolism exhibited statistically significant reduc-
tions in fractures among CKD patients undergoing 
dialysis (phosphate binders, RR = 0.79, 95% CI 0.70–
0.89; cinacalcet, RR = 0.74, 95% CI 0.59–0.93; vitamin 
D analogues, RR = 0.82, 95% CI 0.74–0.92; respec-
tively) compared to control groups. However, in non-
dialysis patients, there was a limited number of studies 
investigating the effects of these drugs on final frac-
ture endpoints. The pooled results from three studies 
on drugs and fracture endpoints were inconclusive, 
suggesting that calcium and phosphorus-modulating 
drugs were not associated with a decreased risk of 
fracture when compared to control groups in CKD 
patients not undergoing dialysis (Fig.  5B; phosphate 
binders, RR = 1.07, 95% CI 0.90–1.27; vitamin D ana-
logues, RR = 0.95, 95% CI 0.66–1.37; respectively).

Sensitivity analysis and publication bias
The sensitivity analysis indicated that the exclusion of 
any individual study from the meta-analysis did not alter 
the overall conclusions (Figure S3). Publication bias was 
assessed using Egger’s test for studies exceeding 10 in 
number. Consequently, no publication bias was detected 
in the pooled studies (high Pi with fracture, P = 0.065; 
high iPTH with fracture, P = 0.555; calcium and phospho-
rus-modulating drugs treatment with fracture, P = 0.070; 
Figure S4).

Discussion
This meta-analysis represents the inaugural attempt to 
elucidate the association between mineral bone meta-
bolic markers and the risk of fractures in CKD. Our find-
ings indicate that elevated phosphorus, high iPTH, and 
increased FGF-23, as well as decreased phosphorus and 
diminished iPTH, are all associated with an elevated risk 
of fractures in the CKD population.

As has been previously suggested, existing literature 
proposes that bone loss is a primary contributor to frac-
tures [2, 3, 12]. Experimental CKD studies demonstrate 
distinct regulatory roles of high serum Pi and iPTH in 
bone loss and vascular calcification [40]. The Wnt/β-
Catenin signaling pathway is crucial for normal bone 
mineralization, osteoblastic activity, osteocyte func-
tion, and overall bone health [41]. In CKD, this pathway 
is dysregulated, contributing to impaired bone remod-
eling and fragility. Wnt signaling is involved in osteo-
blast differentiation and bone matrix production, as well 
as osteocyte viability and communication, all of which 
are vital for bone integrity [42, 43]. Recent studies have 

Fig. 1 Risk ratios (RRs) for fractures in CKD patients associated with inorganic phosphate (Pi) levels from pooled studies. A Pooled results 
from studies assessing fractures associated with high Pi. B Pooled results from studies assessing fractures associated with low Pi
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shown that FGF23 inhibits the Wnt pathway, exacerbat-
ing bone loss in CKD [44]. Elevated FGF23 levels in ure-
mic models suppress Wnt signaling, leading to reduced 
osteoblastic activity and bone formation. Additionally, 
iPTH enhances FGF23 expression, further inhibiting 
Wnt signaling, which results in a cycle of bone resorption 
and mineralization defects [45]. Besides Wnt/β-Catenin, 
other pathways like RANK/RANKL/OPG also contrib-
ute to CKD-related bone disorders [46]. These pathways 

collectively influence bone fragility in CKD, highlighting 
the need for targeted therapies to modulate them and 
improve bone health in this population.

In pre-dialysis CKD patients, an iPTH level below 
70  pg/ml was associated with a high risk of low bone 
mineral density (BMD), and patients with adynamic bone 
disease (ABD) and osteomalacia (OM) exhibited lower 
trabecular bone volume. Low turnover bone disease, as 
manifested by ABD and OM, emerged as a hallmark of 

Fig. 2 Risk ratios (RRs) for fractures in dialysis patients associated with intact parathyroid hormone (iPTH) levels from pooled studies. A Pooled 
results from studies assessing fractures associated with high iPTH. B Pooled results from studies assessing fractures associated with low iPTH

Fig. 3 Risk ratios (RRs) for fractures in CKD patients without dialysis associated with fibroblast growth factor-23 (FGF23) levels from pooled studies
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bone loss [47]. Bone histomorphometric analysis also 
indicated an independent correlation between serum 
FGF23 levels and bone volume parameters in rats with 
experimentally induced CKD [48].

The mechanism by which hyperphosphatemia induces 
an elevated risk of fractures is not fully elucidated. Poten-
tial mechanisms include the suppression of osteoblastic 
proliferation through insulin-like growth factor 1 and 
osteopontin gene expression [49]. Hyperphosphatemia 
has also been implicated in increasing osteoblast apopto-
sis and reducing bone formation [50], as well as inhibiting 

bone resorption through the stimulation of osteoblast-
produced osteoprotegerin [51].

Conversely, it is noteworthy that hypophosphatemia 
is associated with an increased risk of fractures in CKD 
population. Phosphate plays crucial roles in numerous 
biological processes, and chronic hypophosphatemia 
leads to impaired mineralization of the bone matrix, 
resulting in conditions such as rickets and osteomala-
cia, as observed in X-Linked Hypophosphatemia (XLH) 
and FGF23-related hypophosphatemic diseases [52]. 
Bones from mice with XLH exhibit enlarged osteocyte 

Fig. 4 Risk ratios (RRs) for fractures in CKD patients with dialysis associated with calcium (Ca) levels from pooled studies. A Pooled results 
from studies assessing fractures associated with high Ca. B Pooled results from studies assessing fractures associated with low Ca

Fig. 5 Risk ratios (RRs) for fractures in CKD patients associated with drug treatments from pooled studies. A Pooled results from studies assessing 
fractures in CKD patients with dialysis of drug treatments. B Pooled results from studies assessing fractures in CKD patients without dialysis of drug 
treatments
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lacunae, enhanced osteocyte expression of genes related 
to bone remodeling, and impaired canalicular structure 
[53]. In vitro studies have demonstrated that hypophos-
phatemia leads to rickets by impairing caspase-mediated 
apoptosis of hypertrophic chondrocytes [54]. However, 
research on the relationship between hypophosphatemia 
and osteoblasts is limited. Future studies on low phos-
phorus and osteoblasts may provide insights into why 
low phosphorus increases the risk of fractures.

The efficacy of phosphate binders in reducing the risk 
of fractures in CKD patients has been a subject of contro-
versy. Phosphate binders encompass calcium-based phos-
phate binders (CPB) and non-calcium-based phosphate 
binders (NCPB), including sevelamer and lanthanum. 
Early studies with small sample sizes in hemodialysis 
patients suggested that NCPB was associated with lower 
BMD at the lumbar spine and distal radius compared to 
CPB [55]. However, another small sample study in inci-
dent hemodialysis patients found no significant differ-
ences in lumbar and femoral BMD between lanthanum 
carbonate and calcium carbonate groups [56].

A prospective two-year study in chronic dialysis 
patients, using dual X-ray absorptiometry (DXA) and 
quantitative computed tomography (QCT) to meas-
ure BMD changes, indicated that vitamin D analogs 
and phosphate binders did not protect against bone loss 
[57]. Cinacalcet showed protective effects in univari-
ate analysis but not in multivariable analysis [57]. There 
are limited trials investigating bone histomorphomet-
ric changes through bone biopsy after phosphate binder 
therapy. A 54-week randomized study with 119 hemodi-
alysis patients comparing the effects of sevelamer hydro-
chloride and calcium carbonate on bone demonstrated 
that sevelamer did not result in statistically significant 
changes in bone turnover or mineralization compared 
to calcium carbonate. However, sevelamer was asso-
ciated with increased bone formation and improved 
trabecular architecture [58]. In a small trial with hemo-
dialysis patients, cinacalcet treatment decreased iPTH 
and reduced activation frequency, bone formation rate/
bone surface, and fibrosis surface/bone surface [59]. 
Despite the prevalent use of paricalcitol or doxercalcif-
erol in stage 5 CKD patients, there is limited prospective 
human research on their effects on bone. A six-month 
prospective trial demonstrated that calcitriol treatment 
decreased bone turnover, bone resorption and formation, 
and reduced woven osteoid and fibrosis. It also improved 
mineralization and parameters of bone architecture in 
hemodialysis patients [60]. In rats with CKD, calcitriol 
positively influenced bone microarchitecture, achieving 
normal trabecular connectivity [61].

Considering that excessive suppression of iPTH may 
increase fracture risk, iPTH levels should be monitored 

during treatment with vitamin D analogs and cinacal-
cet. Maintaining an appropriate balance between thera-
peutic benefits and potential risks is essential. Future 
research should focus on determining the optimal ther-
apeutic range for iPTH suppression to ensure that the 
fracture risk reduction achieved with these therapies is 
not compromised by overly aggressive suppression of 
iPTH.

This meta-analysis is subject to several potential 
limitations. Firstly, the majority of studies included 
are observational or prospective/retrospective trials, 
with only two randomized controlled trials (RCTs). A 
meta-analysis incorporating high-quality RCT data 
would enhance the persuasiveness of the findings. Sec-
ondly, there is notable heterogeneity in the analysis of 
the association between low iPTH levels and fracture 
risk (I squared = 71.5, Fig.  2B), likely due to variations 
in study design (Figure S2). Future RCTs should further 
investigate and confirm the association of low iPTH 
with an increased risk of fractures in CKD population. 
Thirdly, the limited number of papers addressing low 
phosphate (5 papers), as well as the effects of vitamin D 
analogues (5 papers) and cinacalcet (4 papers) on frac-
ture risk in the CKD population, underscores the need 
for more clinical trials to validate the association of 
low phosphate with the risk of fractures and to further 
establish the protective effects of vitamin D analogues 
and cinacalcet on bone.

In summary, our meta-analysis reveals that elevated 
serum phosphate, iPTH, and FGF23 are associated with 
an increased risk of fractures, while low phosphate and 
low iPTH also contribute to an elevated risk of fractures 
in CKD population. Regarding calcium levels, while 
higher calcium levels showed a trend towards reducing 
fracture risk, this finding was not statistically signifi-
cant. Similarly, lower calcium levels tended to increase 
fracture risk, but again, this was not statistically sig-
nificant. To better understand the relationship between 
these factors and fracture risk, further research is war-
ranted, particularly regarding the impact of calcium 
levels on fracture risk in CKD patients. Future studies 
should consider larger sample sizes and longer follow-
up periods to validate these trends and explore poten-
tial clinical intervention strategies. Given the limited 
data available on non-dialysis CKD populations, future 
research should focus on conducting trials specifically 
targeting this group to better understand the efficacy of 
treatments such as phosphate binders, cinacalcet, and 
vitamin D analogs in non-dialysis patients. Addressing 
this gap will provide valuable insights and guide clinical 
decision-making in the management of mineral bone 
disorders in this population.
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