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Introduction
The diagnosis of kidney diseases relies on the assessment 
of medical images, such as computed tomography and 
histopathological images. However, accurately discern-
ing the wide array of changes in renal pathology remains 
challenging even for experienced renal pathologists. 
Various traditional techniques have been developed for 
kidney segmentation across different imaging modali-
ties to aid in diagnosing kidney diseases [1–4]. Although 
some research has addressed the classification of kidney 
pathologies, more advanced and effective methods are 
still needed in this field [5, 6]. Recent advancements in 
artificial intelligence (AI) have led to significant progress 
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Abstract
Recent advancements in computer vision within the field of artificial intelligence (AI) have made significant inroads 
into the medical domain. However, the application of AI for classifying renal pathology remains challenging due 
to the subtle variations in multiple renal pathological classifications. Vision Transformers (ViT), an adaptation of the 
Transformer model for image recognition, have demonstrated superior capabilities in capturing global features 
and providing greater explainability. In our study, we developed a ViT model using a diverse set of stained renal 
histopathology images to evaluate its effectiveness in classifying renal pathology. A total of 1861 whole slide 
images (WSI) stained with HE, MASSON, PAS, and PASM were collected from 635 patients. Renal tissue images were 
then extracted, tiled, and categorized into 14 classes on the basis of renal pathology. We employed the classic 
ViT model from the Timm library, utilizing images sized 384 × 384 pixels with 16 × 16 pixel patches, to train the 
classification model. A comparative analysis was conducted to evaluate the performance of the ViT model against 
traditional convolutional neural network (CNN) models. The results indicated that the ViT model demonstrated 
superior recognition ability (accuracy: 0.96–0.99). Furthermore, we visualized the identification process of the ViT 
models to investigate potentially significant pathological ultrastructures. Our study demonstrated that ViT models 
outperformed CNN models in accurately classifying renal pathology. Additionally, ViT models are able to focus 
on specific, significant structures within renal histopathology, which could be crucial for identifying novel and 
meaningful pathological features in the diagnosis and treatment of renal disease.
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in computer vision [7, 8] and its gradual expansion into 
the medical field [9]. Moreover, the recent developments 
in WSI technology have facilitated the integration of AI 
into renal pathology applications. Owing to its unparal-
leled learning capabilities, AI has the potential to acquire 
extensive medical knowledge from large-scale renal 
pathology data, thereby supporting clinical decision-
making and reducing diagnostic and therapeutic bias 
in clinical practice [10]. However, significant obstacles 
still hinder the wider adoption of AI in renal pathol-
ogy [11–13]. Currently, image recognition techniques 
and segmentation models have limited applicability in 
renal pathology. This is primarily due to subtle variations 
across multiple classifications of renal pathology and the 
relatively small size of available datasets. Achieving accu-
rate labeling and recognition of these subtle pathologi-
cal changes in the kidneys requires a substantial cohort 
of specialized nephropathologists and significant time 
investment. Renal pathology typically involves integrat-
ing results from multiple stains. The use of AI algorithms 
for integrating these results is still being explored. Fur-
thermore, significant challenges persist in higher-level 
semantic recognition, such as directly identifying specific 
pathological changes in particular areas or types of path-
ological images, with corresponding research reports 
currently being sparse.

Currently, most models focus on segmenting various 
renal pathological structures, including glomeruli, renal 
tubules, renal blood vessels, and the renal-tubule inter-
stitium. For example, Bel and Hermsen et al. developed 
and compared two fully convolutional networks, assess-
ing the performance of UNet for classification tasks [12, 
14, 15]. Meanwhile, Salvi and Bueno et al. employed 
semantic segmentation techniques to identify glomeruli 
and analyze their morphological changes [6, 16]. Other 
research has utilized object detection methods to recog-
nize glomeruli within WSI [17, 18], and additional stud-
ies have classified pathological changes in glomeruli [19, 
20]. Furthermore, advanced language analyses are being 
explored to connect renal pathological changes with 
clinical features such as kidney function, proteinuria, 
and prognosis [21]. All these approaches are grounded in 
CNN frameworks.

While the CNN is efficient in extracting general struc-
tural features, it faces challenges in capturing focal 
microfeatures. Transformers are currently considered 
state-of-the-art methods in nearly all natural language 
processing (NLP) benchmarks and have given rise to 
vision transformers (ViT) for application in visual tasks 
[22, 23]. Their approach differs from that of CNNs as they 
employ a self-attention mechanism to recognize image 
content and are more sensitive to local pixel changes 
over a wide range. The precise delineation of features by 
ViT is more likely to be extracted for the recognition of 

kidney pathology, thereby infusing a renewed vigor into 
the identification of kidney pathology images.

Our study employed four conventional staining patho-
logical images of kidney tissue to train corresponding 
image classification models based on ResNet50 and ViT 
models. Additionally, in order to investigate the focus 
areas of the obtained ViT model for pathological diag-
nosis and the potential pathological significance of these 
areas, we visualized the ViT model via the Deep Taylor 
Decomposition principle [24], and developed a random 
mask method for further validation.

Methods
Experimental design and participants
The experimental process design is illustrated in Fig.  1. 
We conducted a retrospective review of patients who 
underwent ultrasound-guided percutaneous renal biopsy 
(PRB) at the Department of Nephrology, Second Affili-
ated Hospital of Wenzhou Medical University, from 
January 2013 to April 2020. Pathological diagnosis was 
performed using four routine staining techniques: hema-
toxylin and eosin (H&E), Masson’s trichrome (Masson), 
Periodic Acid-Schiff (PAS), and Periodic Schiff-Methe-
namine (PASM). WSIs were obtained by scanning the 
stained renal tissue slides with a KF-PRO whole-slide 
scanner manufactured by KFBIO. A dataset comprising 
patients with at least two WSI exhibiting different stain-
ing patterns was constructed.

Preprocessing of digital pathological sections
The WSIs of the included patients were converted to 
RGB bitmap images at maximum magnification, which 
acquired at ×20 accessory magnification, resulting in 
images with a resolution of 0.5 µM per pixel. Afterwards, 
the entire image was tiled into 384 * 384 pixels tiles. To 
account for the presence of various non-renal tissue 
regions, such as fat, muscle, and background, we applied 
a combination of color thresholding and edge detec-
tion, followed by manual screening, to identify renal tis-
sue regions. Tiles that overlapped with renal regions by 
more than 90% were selected for further analysis (Fig. 1a-
d). In order to address the imbalance in the number of 
images across different pathological diagnosis types, we 
employed a rotation augmentation technique to equalize 
the number of images across groups. Subsequently, the 
acquired tiles set was randomly partitioned into training 
and validation sets at an 8:2 ratio.

Model construction and model training
We employed the ResNet50 and ViT models, both of 
which were constructed using the timm library [25]. To 
ensure a precise evaluation of whether the VIT model 
outperforms ResNet50 in kidney pathology image rec-
ognition tasks, we maintain the original model structure 
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without any modifications. In this configuration, the 
image size is set to 384 × 384 pixels, divided into patches 
of 16 × 16 pixels each. The model has 14 different types, 
a depth of 12 layers, and 12 attention heads. The multi-
layer perceptron (MLP) ratio is set to 4, indicating the 
ratio of the hidden layer size to the input layer size within 
the MLP block. The embedding dimension is 768, result-
ing in a total parameter count of 86,859,496. Consider-
ing the efficacy of importing pretraining parameters in 
enhancing model performance and reducing training 
cycles, all the models were initialized with pretraining 
parameters. We trained separate classification models 
for each of the four staining methods, conducting 100 
epochs per model. The timm library was employed to 
construct an optimizer. Although hybrid loss functions 
have been used in some recent works [26–28], the cross-
entropy loss function is computationally efficient and 
commonly used. Therefore, it has been used in our exper-
imental wırks.

Performance evaluation
Our validation dataset was used to evaluate the identifi-
cation performance of the ResNet50 and ViT classifica-
tion models across four different stainings. Additionally, 
we employed the F1 score and Receiver Operating Char-
acteristic (ROC) curves to assess variations in recogni-
tion performance among different renal pathological 
types.

Visualization and Random Mask Verification of the ViT 
Model
For the trained ViT model, we aim to identify the specific 
pathological structures that significantly influence its 
classification performance to detect critical pathological 
changes. To visualize and analyze the impact of different 
regions on the model’s prediction results, we employed 
Chefer et al.‘s ViT visualization method, which generates 
heatmaps [24]. Inspired by the mask method in the NLP 
model, we hypothesize that significant changes in classi-
fication occur when a specific area in an image is filled 
with blank space. These findings suggest that the identi-
fied area may play a crucial role in identifying the patho-
logical type of renal disease, indicating its importance as 
an essential pathological change for that specific type. To 
validate this hypothesis, we developed a random mask 
method in which 256 random 64 * 64 boxes were gener-
ated for each validation image. The pixels within these 
boxes were replaced with zeros and subsequently used 
for image classification. Any misclassifications occurring 
within the box areas were considered indicative of their 
significance.

Results
Images incorporation and Dataset construction
We enrolled a total of 635 patients, 46.4% of whom were 
female with an average age of 43.4 years. A compre-
hensive collection of 1861 high-quality renal pathology 
WSIs were obtained, comprising HE-stained (n = 633), 
MASSON-stained (n = 635), PAS-stained (n = 633), and 
PASM-stained (n = 628) samples. The dataset processing 
is illustrated in Fig. 1. In brief, the images represented 14 

Fig. 1 Overview of the period pipeline. The collected WSI images are used to construct a WSI dataset, and then the WSI is transformed into a grid format. 
Kidney tissue regions are identified, and a mask image is built with grid images to obtain kidney tissue of interest. The obtained grid images are used to 
construct an image set and are randomly divided into a training set and a validation set. The ResNet50 and ViT models are trained on training set images. 
Finally, the model performance is verified via a validation set. Figure a. Gridded pathological image, where b results from identified kidney tissue regions 
and a mask is constructed. In c, the red grid shows the grid where the proportion of kidney tissue is greater than 90%, and the blue grid shows the grid 
where the proportion of kidney tissue is less than 90%. Figure d is a fusion image of Figures b and c, which more obviously shows the position of the grid 
in the renal tissue
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distinct pathological types, each meticulously reviewed 
by PM and CB for diagnostic accuracy. Since this study 
focused solely on classification training, cases with mul-
tiple pathological diagnoses were assigned to the most 
prominent category after thorough discussions within 
the research team. The distribution of the pathological 
profiles of the included patients is shown in Fig. 2. 

Different performances of the ViT model and ResNet50 
model.
Our findings demonstrate that all four staining mod-
els exhibited high recognition performance (Accuracy 
range: 0.89–0.99), with HE displaying the lowest recog-
nition ability and PASM demonstrating the most robust 
recognition capability, as depicted in Fig.  3. Compared 
with ResNet50 (Accuracy: 0.89–0.95), the ViT model 
showcased superior vital recognition ability (Accuracy: 
0.96–0.99). Furthermore, it is evident from F1 scores and 
ROC curves that ViT outperformed ResNet50 in recog-
nizing various pathological types. However, the model’s 
recognition ability for IgAN and MN was relatively weak, 
which could be attributed to a greater number of cases.

Model interpretation
The model interpretation is illustrated in Fig. 4. A heat-
map was used to visualize the attention points of the ViT 
models, revealing that after training, the primary renal 
pathological information captured by the models was 
concentrated in the glomerulus, tubules, and tubuloint-
erstitium. Conversely, there was no significant enhance-
ment in the blank area, indicating that the models were 

able to identify essential pathological features. Further-
more, our findings from random mask plot and Deep 
Taylor Decomposition principle results demonstrated 
substantial overlap, providing further validation for the 
potential diagnostic significance of these renal struc-
tures. Additionally, we highlight that changes around 
the tubulointerstitial area may constitute an important 
component of renal pathology that is often overlooked 
by pathologists. We observed a concentration of self-
attention around the renal tubules in the LN, potentially 
linked to IgG deposition. These subtle pixel changes 
are imperceptible to the naked eye. Additionally, PASM 
staining for IgA nephropathy revealed an accumulation 
of hot spots in the renal tubules and mesangial area, pos-
sibly associated with immune complex deposition in the 
mesangial region.

Discussion
Traditionally, the diagnosis of renal pathology usually 
relies on clinical manifestations and results from different 
types of staining via light microscopy and additional fluo-
rescence and electron microscopy. However, computer 
vision can identify some fine distinctions of structures 
or color changes that are difficult to distinguish with the 
naked eye, providing a new approach for accurate diag-
nosis and improvement of renal pathological diagnosis. 
We used ResNet50 and the latest ViT framework to train 
corresponding recognition models for the four types of 
renal pathology stainings, and the results showed that 
they can effectively distinguish the different renal pathol-
ogies. We found that the ViT models are superior to the 

Fig. 2 Renal pathological distribution of the included patients. AMN: amyloidosis nephropathy; ANCA: ANCA-associated glomerulonephritis; DN: diabetic 
nephropathy; FSGS: focal segmental glomerulosclerosis; HPN: hypertension-attributed nephropathy; HSPN: Henoch–Schönlein purpura nephritis; IGAN: 
Henoch–Schönlein purpura nephritis; ITN: tubulointerstitial nephritis; LN: lupus nephritis; MCD: minimal change disease; MN: membranous nephropathy; 
MPGN: membranoproliferative glomerulonephritis; MsPGN: mesangial proliferative glomerulonephritis; TMA: renal thrombotic microangiopathy
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ResNet50 models’ identification performance for the four 
staining methods. Furthermore, the ViT model outper-
forms the ResNet50 framework in terms of recognition 
performance for different pathological types.

Previous AI research on renal pathology has focused 
mainly on recognizing structures involved in renal 
pathology, including glomeruli, tubules, renal vessels, and 
some inflammatory cells, which involve image segmen-
tation and semantic recognition [21, 29–34]. Although 
significant progress has been made in these areas of 
research, more advanced pathological diagnosis are 
still lacking. Renal pathological diagnosis involves vari-
ous aspects of the disease and must be combined with 
various types of renal pathological staining. Our study 
revealed that the models trained with the PASM and 
Masson staining methods can achieve greater accuracy. 
It is speculated that PASM staining and Masson stain-
ing provide a more comprehensive color distribution 

and corresponding pathological tissues, which makes the 
pathological images more informative and conducive to 
the realization of renal pathological diagnosis [5].

The architecture of the ViT model differs from that 
of traditional deep convolutional models in that it rec-
ognizes images through a self-attention mechanism. In 
contrast, extracting fine-grained features from images is 
more better than using a CNN [35, 36]. Although tradi-
tional deep convolutional models have a firmer grasp 
of the overall features of the image, local features are 
smoothed, which is not conducive to feature recogni-
tion of renal pathology. This may also explain why the 
performance of the ViT model is better than that of the 
ResNet50 model.

We prioritize the assessment of distinct pathologi-
cal structures to accurately identify renal pathology, 
which helps in detecting significant renal pathological 
changes and potentially uncovering critical alterations 

Fig. 3 The difference in prediction accuracy between ResNet50 and ViT models in the validation set. Figure A shows the accuracy scores of the ResNet50 
and ViT models. ViT model has a higher accuracy score in all pathological types. Figure B shows the F1 scores for the ResNet50 and ViT models in different 
pathological classes. The models trained using PASM-stained pathological images have higher F1 scores. Figure C uses receiver operating characteristic, 
showing that all curves are approximately symmetrical, the curve area under the ViT models are larger, and the Masson and PASM were the most perfor-
mance models
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that may be imperceptible to the naked eye. By visual-
izing the weights assigned to different renal pathologi-
cal structures in our ViT model recognition process, 
we observed a strong alignment between the key infor-
mation recognized by our model and the aspects we 
focused on daily. For instance, IgA nephropathy is pre-
dominantly localized in the mesangial region, and the 
model also provides valuable insights into areas where 

structural assessment is challenging. However, certain 
focal points may not align with conventional observa-
tions. The first image in Column C of Fig.  4 illustrates 
that the interstitial area surrounding the renal tubules is 
also a region of interest in IgA nephropathy. While the 
interstitial area is not a site for IgA deposition, tubu-
lointerstitial changes are intricately linked to sclerosis 
in the mesangial area and are closely associated with 

Fig. 4 ViT model heatmap visualization and random mask results. Column A depicts the original image, while column B showcases a heatmap gener-
ated using the Deep Taylor Decomposition method, with pixels displayed in a gradient from red to blue indicating high to low self-attention. Column C 
illustrates the merged image of A and B. Column D represents the mask graph, with white squares indicating significant random mask blocks in the image. 
Column E displays the merged image of A and D, while column F presents the merged image of C and D
 The visualization of the ViT model heatmap and random mask results is presented. Column A depicts the original image, while column B showcases a 
heatmap generated using the Deep Taylor Decomposition principle method, with pixels displayed in a gradient of red to blue indicating elevated self-
attention to low. Column C illustrates the merge graph of A and B, column D represents the mask graph, with white squares denoting significant random 
mask blocks in the image. Column E displays the merge graph of A and D, while column F presents the merge graph of C and D
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the prognosis of IgA nephropathy [37–40]. Therefore, 
certain characteristic interstitial changes may repre-
sent specific structural features of IgA nephropathy that 
have yet to be acknowledged. In the context of LN, the 
model highlights peritubular changes that may not be 
readily apparent through H&E staining alone. The incor-
poration of fluorescence in SLE demonstrates the rapid 
deposition of immune complexes surrounding the renal 
tubules, potentially contributing to the model’s valida-
tion. We further use the random mask method to vali-
date the heatmap results, which shows that the hot spot 
area is masked while causing model recognition errors. 
The mask method confirms that the heatmap results have 
significant reference values. However, inconsistent find-
ings have also been reported. For instance, in the case of 
AMN, increased signal intensity is noted in the glomeru-
lar region, while the random mask area corresponds to 
the renal tubules. Both regions are significant for detect-
ing abnormal light chain deposition, indicating that fur-
ther investigation may be necessary.

Some limitations of our study are that although the 
recognition performance of our model was excellent 
in the validation set, we did not validate it on external 
data. There is a risk of overfitting, which can be reduced 
by further expanding the sample size. Second, there are 
often multiple pathological changes in renal pathologi-
cal classification, and we identify only the most signifi-
cant pathological changes, leading to poor performance 
and insufficient generalization performance. In addi-
tion, because the resolution of our images after scanning 
is still low, it will also lead to the blurring of some renal 
pathological features and affect the model recognition 
performance.

Although direct diagnosis of renal pathology by light 
microscopy and four kinds of staining is challenging, our 
study shows that it is possible to directly identify renal 
pathological types by light microscopy, which has impor-
tant implications for renal pathological diagnosis. The 
ViT model can achieve better results than the ResNet50 
model in the classification of renal pathology, indicating 
that the ViT model may be more suitable for recogniz-
ing renal pathology, especially for recognizing local fine 
particle features. Through heatmap and the random 
Mask method, the focus of the model was shown to be 
consistent with the characteristics of renal pathologi-
cal changes, which may indicate that some renal patho-
logical changes are difficult to distinguish by the naked 
eye, providing a new way to explore the renal pathologi-
cal changes of related types of renal pathology. A simi-
lar approach can be applied to histopathological images 
of liver tissues. While numerous studies have focused on 
liver segmentation using various methods [41–43], the 
classification of fatty liver tissues remains insufficiently 
addressed. As another future work, the effectiveness of 

the ViT model can be compared with the effectiveness 
of capsule networks due to their ability of them in keep-
ing spatial relationships of learned features and yield 
high performance in classifying medical images [44–46]. 
Hence, the ViT model holds significant potential for aid-
ing renal pathology diagnosis in the foreseeable future.
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