Skip to main content

Table 3 IDH machine learning results

From: Research on the development of an intelligent prediction model for blood pressure variability during hemodialysis

 

XGBoost

SVM

KNN

DT

RF

LR

NB

AdaBoost

LightGBM

CatBoost

ROC-AUC

0.89

0.87

0.84

0.72

0.89

0.79

0.74

0.81

0.88

0.89

PR-AUC

0.95

0.94

0.92

0.89

0.95

0.90

0.85

0.91

0.95

0.95

accuracy

0.84

0.82

0.81

0.76

0.83

0.76

0.71

0.77

0.83

0.84

precision

0.87

0.83

0.84

0.84

0.85

0.79

0.82

0.80

0.85

0.86

recall

0.93

0.93

0.90

0.83

0.92

0.90

0.76

0.90

0.93

0.92

F1-score

0.90

0.88

0.87

0.83

0.88

0.84

0.79

0.85

0.88

0.89